Abstract:
PROBLEM TO BE SOLVED: To provide a CMOS circuit which includes an n-FET gate stack having a gate dielectric and a metal gate conductor, and a p-FET gate stack having a gate dielectric layer and a silicon-containing gate conductor. SOLUTION: In the high-performance complementary metal oxide film semiconductor (CMOS) circuit, each semiconductor unit has at least the first gate stack and the second gate stack. The first gate stack is disposed on a first device region (e.g., n-FET device region) in a semiconductor board, and at least includes a gate dielectric layer 14, a metal gate conductor 16, and a silicon-containing gate conductor 18 that are laminated in increasing order. The second gate stack is disposed on a second device region (e.g., p-FET device region) in the semiconductor board; and at least includes a gate dielectric layer, and a silicon-containing gate conductor that are laminated in increasing order. The first and second gate stacks can be formed on the semiconductor board by a variety of integrated methods. COPYRIGHT: (C)2007,JPO&INPIT
Abstract:
A method of fabricating a gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over an area vacated by the dummy gate; depositing a thin metal layer over the high- k dielectric layer; annealing the replacement gate structure in an ambient atmosphere containing hydrogen; and depositing a gap fill layer.
Abstract:
A semiconductor structure, particularly a pFET, which includes a dielectric material that has a dielectric constant of greater than that of SiO 2 and a Ge or Si content of greater than 50% and at least one other means for threshold/flatband voltage tuning by material stack engineering is provided. The other means contemplated in the present invention include, for example, utilizing an insulating interlayer atop the dielectric for charge fixing and/or by forming an engineered channel region. The present invention also relates to a method of fabricating such a CMOS structure.
Abstract:
The present invention is directed to CMOS structures that include at least one nMOS device located on one region of a semiconductor substrate; and at least one pMOS device located on another region of the semiconductor substrate. In accordance with the present invention, the at least one nMOS device includes a gate stack comprising a gate dielectric, a low workfunction elemental metal having a workfunction of less than 4.2 eV, an in-situ metallic capping layer, and a polysilicon encapsulation layer and the at least one pMOS includes a gate stack comprising a gate dielectric, a high workfunction elemental metal having a workfunction of greater than 4.9 eV, a metallic capping layer, and a polysilicon encapsulation layer. The present invention also provides methods of fabricating such a CMOS structure.