GATE STRUCTURE OF SEMICONDUCTOR DEVICE
    1.
    发明专利

    公开(公告)号:JP2002124672A

    公开(公告)日:2002-04-26

    申请号:JP2001193470

    申请日:2001-06-26

    Applicant: IBM

    Abstract: PROBLEM TO BE SOLVED: To provide a gate structure for MOSFETs for application of the CMOS technology, etc., which is durable against high temperature processes such as junction activation, etc., and reduces the gate propagation delay. SOLUTION: The gate structure 10 has an insulation layer 14 on a semiconductor substrate 12, and a polysilicon gate electrode 16 on the insulation layer 14. The gate structure 10 comprises a diffused barrier layer 20 having semi- insulative characteristics on the gate electrode 16, and a gate conductor 18 on the barrier layer 20. The conductor 18 is electrically contacted to the gate electrode 16. The constitution and the thickness of the barrier layer 20 are adjusted so as to effectively block the diffusion and the mixing between the gate conductor 18 and the gate electrode 16, but realize a capacitive coupling and/or a leak current not so increasing the gate propagation delayer of the gate surface 10.

    SELF-LIMITING POLYSILICON BUFFERED LOCOS FOR DRAM TRENCH CAPACITOR COLLAR
    2.
    发明申请
    SELF-LIMITING POLYSILICON BUFFERED LOCOS FOR DRAM TRENCH CAPACITOR COLLAR 审中-公开
    用于DRAM TRENCH电容器COLLAR的自限制多晶硅缓冲电路

    公开(公告)号:WO0195391A8

    公开(公告)日:2002-03-28

    申请号:PCT/US0117927

    申请日:2001-06-01

    CPC classification number: H01L27/10861 H01L27/10867

    Abstract: A method of forming relatively thin uniform insulating collar in the storage trench of a storage trench DRAM cell. A DRAM trench is first formed in a silicon substrate. Then, a nitride liner (81) is deposited on the silicon trench walls. The nitride liner may be deposited directly on the silicon walls or on an underlying oxide layer (79). A layer of amorphous silicon (83) is then deposited over the nitride liner. A silicon nitride layer is deposited on the oxidized surface of the amorphous silicon. A resist (83) is formed in the lower portion of the trench, and the exposed silicon nitride layer on top of the amorphous silicon is removed, leaving the upper portion of the amorphous silicon layer exposed. The upper portion of the layer of amorphous silicon is then oxidized so as to form a relatively thin, uniform collar (89) along the entire circumference of the trench. The nitride liner underlying the amorphous silicon layer enhances the thickness uniformity of the amorphous silicon layer and thereby the uniformity of the resulting oxide collar. The nitride liner also acts to limit lateral oxidation of the silicon trench walls during oxidation of the amorphous silicon layer. The nitride liner underlying the collar is also effective in cell operation to control the cell charge at the collar-substrate interface.

    Abstract translation: 一种在存储沟槽DRAM单元的存储沟槽中形成相对薄的均匀绝缘环的方法。 首先在硅衬底中形成DRAM沟槽。 然后,氮化物衬垫(81)沉积在硅沟槽壁上。 氮化物衬垫可以直接沉积在硅壁上或下面的氧化物层(79)上。 然后在氮化物衬垫上沉积一层非晶硅(83)。 在非晶硅的氧化表面上沉积氮化硅层。 在沟槽的下部形成抗蚀剂(83),去除非晶硅顶部的露出的氮化硅层,使非晶硅层的上部露出。 然后,非晶硅层的上部被氧化,以便沿沟槽的整个圆周形成相对较薄的均匀的环(89)。 非晶硅层下面的氮化物衬垫增强了非晶硅层的厚度均匀性,从而提高了所得氧化物环的均匀性。 氮化物衬垫还用于在非晶硅层的氧化期间限制硅沟槽壁的横向氧化。 在套环下面的氮化物衬垫在电池操作中也有效地控制在衬套 - 衬底界面处的电池电荷。

Patent Agency Ranking