Abstract:
PROBLEM TO BE SOLVED: To provide a method of minimizing an RIE lag, which occurs during production of a DT in a DRAM having a large aspect ratio. SOLUTION: Using this method, isotropic etching of a wafer can be prevented and hence a passivation film is formed to such a extent as to require to maintain a profile and shape of a DT in the wafer. The RIE process described here provides a partial DT etched in the wafer to attain a prescribed depth. This passivation film is grown to a certain thickness which is not sufficiently thick to block an opening of the deep-trench. In an alternative method, the passivation film is removed by a non-RIE process. The non-RIE process for removing the film may be wet etching using chemicals, such as hydrofluoric acid (buffered or unbuffered) or the like. Alternatively, a vapor phase of hydrofluoric anhydride or the like and/or un-ionized chemicals may be used. By controlling the film thickness, a prescribed depth of a DT for a high aspect ratio structure can be obtained.
Abstract:
A method of minimizing RIE lag (i.e., the neutral and ion fluxes at the bottom of a deep trench (DT) created during the construction of the trench opening using a side wall film deposition)) in DRAMs having a large aspect ratio (i.e., > 30:1) is described. The method forms a passivation film to the extent necessary for preventing isotropic etching of the substrate, hence maintaining the required profile and the shape of the DT within the substrate. The RIE process described provides a partial DT etched into a substrate to achieve the predetermined depth. The passivation film is allowed to grow to a certain thickness still below the extent that it would close the opening of the deep trench. Alternatively, the passivation film is removed by a non-RIE etching process. The non-RIE process that removes the film can be wet etched with chemicals, such as hydrofluoric acid (buffered or non buffered) or, alternatively, using vapor phase and/or non-ionized chemicals, such as anhydrous hydrofluoric acid. The controlled thickness of the film allows achieving a predetermined DT depth for high aspect ratio structures