Abstract:
PROBLEM TO BE SOLVED: To provide a method of minimizing an RIE lag, which occurs during production of a DT in a DRAM having a large aspect ratio. SOLUTION: Using this method, isotropic etching of a wafer can be prevented and hence a passivation film is formed to such a extent as to require to maintain a profile and shape of a DT in the wafer. The RIE process described here provides a partial DT etched in the wafer to attain a prescribed depth. This passivation film is grown to a certain thickness which is not sufficiently thick to block an opening of the deep-trench. In an alternative method, the passivation film is removed by a non-RIE process. The non-RIE process for removing the film may be wet etching using chemicals, such as hydrofluoric acid (buffered or unbuffered) or the like. Alternatively, a vapor phase of hydrofluoric anhydride or the like and/or un-ionized chemicals may be used. By controlling the film thickness, a prescribed depth of a DT for a high aspect ratio structure can be obtained.
Abstract:
A method and system for controlling a dimension of an etched feature (150). The method includes: measuring a mask feature (145) formed on a top surface of a layer (110) on a substrate (100) to obtain a mask feature dimension value; and calculating (265) a mask trim plasma etch time based on the mask feature dimension value, a mask feature dimension target value (255), a total of selected radio frequency power-on times of a plasma etch tool (180) since an event occurring to a chamber or chambers of a plasma etch tool for plasma etching the layer, and an etch bias target for a layer feature to be formed from the layer where the layer is not protected by the mask feature during a plasma etch (275) of the layer.
Abstract:
PROBLEM TO BE SOLVED: To obviate the need for etching redesigning by laying out a deep trench pattern by using a dummy semiconductor material loading rate, that is obtained by subtracting a device trench level semiconductor material loading rate from an estimated final trench level semiconductor material loading rate. SOLUTION: First, a final chip design silicon loading rate is estimated, and a plurality of device deep trenche patterns are laid out, that constitute an integrated circuit chip 14 to be developed. These trenches cumulatively have device silicon loading rates. Next, the device silicon loading rate is subtracted from the the estimated final chip design loading rate so as to compute a dummy silicon loading rate, and cumulative silicon loading rates are used to lay out a plurality of dummy deep trenches 22. It is preferable have the device trenches disperse uniformly and the dummy trenches over a chip.
Abstract:
PROBLEM TO BE SOLVED: To provide a more advantageous and simplified method for forming a bolt type trench in a semiconductor device for increasing stored capacity. SOLUTION: In a method for forming a bolt type trench 20 in a semiconductor substrate 10, a trench 20 having a tapered top section 25 is formed in a semiconductor device by reactive ion etching, and the reactive ion etching is continued. In the man time, the temperature of the semiconductor device is increased to provide the trench 20 with a rectangular recess.
Abstract:
A method for forming a bottle shaped trench 20 in a semiconductor substrate 10 includes etching a trench having a tapered top portion 25 in the semiconductor device and continuing to etch with different etch parameters to impart a reentrant profile 22 to the trench.
Abstract:
Eine organische Planarisierungsschicht (OPL) wird auf einem Halbleitersubstrat gebildet, welches eine Vielzahl von Gate-Leitungen darauf umfasst. Jede Gate-Leitung umfasst zumindest ein High-k-Gate-Dielektrikum und eine Metall-Gate-Zone. Anschließend wird auf der OPL ein strukturierter Photoresist angeordnet, welcher mindestens eine darin ausgebildete Struktur aufweist. Die mindestens eine Struktur in dem Photoresist verläuft senkrecht zu jeder der Gate-Leitungen. Die Struktur wird dann durch Ätzen in die OPL und Abschnitte jeder der darunter liegenden Gate-Leitungen übertragen, um eine Vielzahl von Gate-Stapeln bereitzustellen, welche jeweils zumindest einen High-k-Dielektrikums-Abschnitt und einen Metall-Gate-Abschnitt umfassen. Der strukturierte Photoresist und die verbleibende OPL-Schicht werden dann unter Anwendung einer Folge von Schritten entfernt, welche ein erstes In-Kontakt-Bringen mit einer ersten Säure, ein zweites In-Kontakt-Bringen mit einer wässrigen, Cer enthaltenden Lösung und ein drittes In-Kontakt-Bringen mit einer zweiten Säure umfassen.
Abstract:
A method for forming a bottle shaped trench 20 in a semiconductor substrate 10 includes etching a trench having a tapered top portion 25 in the semiconductor device and continuing to etch with different etch parameters to impart a reentrant profile 22 to the trench.
Abstract:
A method of fabricating a magnetic tunnel junction (MTJ) device is provided. A patterned hard mask is oxidized to form a surface oxide thereon. An MTJ stack is etched in alignment with the patterned hard mask after the oxidizing of the patterned hard mask. Preferably, the MTJ stack etch recipe includes chlorine and oxygen. Etch selectivity between the hard mask and the MTJ stack is improved.