Abstract:
The invention comprises a memory with a storage cell (100) that is formed in a substrate (105) and consists of a trench capacitor (110) and a transistor (160). The trench capacitor (110) is connected to the transistor (160) with a self-aligned connection (220). The transistor (160) at least partially covers said trench capacitor (110). The trench capacitor (110) is filled with a conductive trench filling and an insulating cover layer (135) is located on said conductive trench filling (130). An epitaxy layer (245) is located above said insulating cover layer (135). The transistor (160) is formed in said epitaxy layer (245). The self-aligned connection (220) is formed in a contact trench (205) and consists of an insulation collar (235) into which a conductive material (225) is introduced. A conductive cap (230) is formed on said conductive material.
Abstract:
A memory having a memory cell formed in a substrate and including a trench capacitor and a transistor and a method for producing the memory includes connecting the trench capacitor to the transistor with a self-aligned connection. The transistor at least partly covers the trench capacitor. The trench capacitor is filled with a conductive trench filling and an insulating covering layer is situated on the conductive trench filling. An epitaxial layer is situated above the insulating covering layer. The transistor is formed in the epitaxial layer. The self-aligned connection is formed in a contact trench and includes an insulation collar in which a conductive material is introduced. A conductive cap is formed on the conductive material.
Abstract:
A method for the manufacture of micro-mechanical components from a stack of layers having at least a substrate, a sacrificial layer and a layer which is to be undercut includes forming at least one etch hole in the layer, which is to be undercut, and providing at least one passivation layer for controlling a selective depositing of a cover material which closes each of the etch holes after a step of etching the sacrificial layer. The passivation layer makes it possible that the undercut layer elements do not become excessively thick or grow together with the substrate due to the deposition of the cover material.
Abstract:
A method for the manufacture of micro-mechanical components from a stack of layers having at least a substrate, a sacrificial layer and a layer which is to be undercut includes forming at least one etch hole in the layer, which is to be undercut, and providing at least one passivation layer for controlling a selective depositing of a cover material which closes each of the etch holes after a step of etching the sacrificial layer. The passivation layer makes it possible that the undercut layer elements do not become excessively thick or grow together with the substrate due to the deposition of the cover material.
Abstract:
Production of an epitaxial layer comprises: preparing substrate (105) having a single crystalline region (107) and an electrically insulated region (108); growing epitaxial layer (245) on the single crystalline region; and partially removing the epitaxial layer. Production of an epitaxial layer comprises: preparing substrate (105) having a single crystalline region (107) and an electrically insulated region (108); growing epitaxial layer (245) on the single crystalline region, in which the electrically insulated region is partially grown laterally by the epitaxial layer and forms an epitaxial closing joint (275); and partially removing the epitaxial layer above the electrically insulated region so that the epitaxial closing joint is partially removed. Preferred Features: The epitaxial layer is removed by anisotropic etching. The single crystalline region consists of silicon and the electrically insulated region consists of silicon oxide.
Abstract:
A memory having a memory cell formed in a substrate and including a trench capacitor and a transistor and a method for producing the memory includes connecting the trench capacitor to the transistor with a self-aligned connection. The transistor at least partly covers the trench capacitor. The trench capacitor is filled with a conductive trench filling and an insulating covering layer is situated on the conductive trench filling. An epitaxial layer is situated above the insulating covering layer. The transistor is formed in the epitaxial layer. The self-aligned connection is formed in a contact trench and includes an insulation collar in which a conductive material is introduced. A conductive cap is formed on the conductive material.
Abstract:
The invention relates to a polishing agent characterised in that it is comprised of a solution containing fluoride and that polishing grains are suspended in said solution. The polishing grains are made of a chemically resistant material. The invention also relates to the use of said polishing agent in the planishing of semiconductor substrates or substrates made of 3d transition elements, silicides, refractory metals, metal oxides or oxidic supraconductors.