Abstract:
The invention relates to a method for producing trench capacitors having trenches (3-9) with mesopores (3-12). These trench capacitors are suited both for discrete capacitors and for integrated semiconductor memories. The mesopores significantly increase the surface for electrodes for the trench capacitors and thereby the capacitance of the trench capacitors. According to the invention, the mesopores, which are small channels similar to those made by woodworms and which have diameters ranging from 2 to 50 nm, are electrochemically produced. This method enables the production of capacitances with a high capacitance-to-volume ratio. The invention is additionally advantageous in that the growth of the mesopores stops once the mesopores reach a minimal distance from another mesopore or from adjacent trenches (self-passivation). As a result, the formation of short circuits between two adjacent mesopores can be prevented in a self-regulated manner. The invention also relates to a semiconductor component comprising at least one trench capacitor on the front side of a semiconductor substrate, which can be produced using the inventive method.
Abstract:
The invention relates to a bipolar transistor (20) and to a method for producing the same. In order to obtain an as low a transition resistance as possible between the feed line (51) and the base (42), an intermediate layer (70) is provided between the first (30) and the second (40) layer, said intermediate layer (70) being selectively etchable to the second layer (40). At least in the zone of the undercut (43) between the feed line (51) and the base (42) a base connection zone (45) is provided that can be adjusted independent of other production conditions. The inventive transistor is further characterized in that the intermediate layer (70) is removed in the contact zone (46) with the base (42).
Abstract:
According to the invention, a double gate MOSFET semiconductor layer structure is formed on a substrate (1). This structure is comprised of a first and of a second gate electrode (10A, 10B) between which a semiconductor channel layer zone (4A) is embedded, and of a source region (2A) and a drain region (2B) which are arranged on opposite faces of the semiconductor channel layer zone (4A). At least one additional semiconductor channel layer zone (6A) is provided on one of the gate electrodes (10B). The faces of the at least one additional semiconductor channel layer zone are also contacted by the source region (2A) and drain region (2B).
Abstract:
Verfahren zum Entwickeln eines Photolacks (13), mit folgenden Schritten: Anwenden (S9) eines ersten Entwicklers auf den Photolack (13), um nicht-vernetzte Bereiche (25) des Photolacks (13) zu entfernen; Anwenden (S11) eines zweiten Entwicklers auf den Photolack (13), um verbleibende nicht-vernetzte Bereiche (25) des Photolacks (13) zu entfernen, wobei sich der erste Entwickler und der zweite Entwickler in ihrer Zusammensetzung unterscheiden; und Beschießen oder In-Kontakt-Bringen des Photolacks (13) mit einem Sauerstoffplasma nach dem Schritt (S11) des Anwendens des zweiten Entwicklers.
Abstract:
It is proposed a method of manufacturing an electronic system wherein a first substrate comprising first connection elements on a first surface of the first substrate is provided; a second substrate comprising second connection elements on a first surface of the second substrate is provided; a polymer layer is applied to at least one of the two first surfaces; the first connection elements are attached to the second connection elements; and the polymer layer is caused to swell during or after the attachment.
Abstract:
A method for the manufacture of micro-mechanical components from a stack of layers having at least a substrate, a sacrificial layer and a layer which is to be undercut includes forming at least one etch hole in the layer, which is to be undercut, and providing at least one passivation layer for controlling a selective depositing of a cover material which closes each of the etch holes after a step of etching the sacrificial layer. The passivation layer makes it possible that the undercut layer elements do not become excessively thick or grow together with the substrate due to the deposition of the cover material.