Abstract:
PROBLEM TO BE SOLVED: To provide a better method for forming a thin film bulk acoustic resonator filter. SOLUTION: The film bulk acoustic resonator filter 10 is formed of a plurality of interconnected series and shunt film bulk acoustic resonators 38 formed on the same membrane 35. Each of the film bulk acoustic resonator 38 is formed of one common lower conductive layer which is defined to form a bottom electrode 32 of the film bulk acoustic resonator 38. The one common conductive layer is defined to form a top electrode 36 of each of the film bulk acoustic resonator 38. One common piezoelectric film layer 34 which may or may not be not patterned forms one continuous or discontinuous film. COPYRIGHT: (C)2004,JPO
Abstract:
PROBLEM TO BE SOLVED: To provide a better method of forming a thin-film bulk acoustic resonator filter. SOLUTION: In the method of manufacturing a thin-film bulk acoustic resonator filer, a thin-film bulk acoustic resonator filter 10 includes a plurality of thin-film bulk acoustic resonators 38a to 38g series-connected and branched on the same film 35. The thin-film bulk acoustic resonators 38a to 38g are made of a single common lower conductive layer to have respective bottom electrodes of the thin-film bulk acoustic resonators. The single common conductive layer is provided to form respective upper electrodes of the thin-film bulk acoustic resonators 38a to 38g. A common piezoelectric thin-film layer, which may or may not be patterned, is formed as a thin film continuous as a single or not continuous. COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
A method is disclosed. The method includes fabricating microelectromechanical (MEMS) structures of a Seek and Scan Probe (SSP) memory device on a first wafer, and fabricating CMOS and memory medium components of the SSP memory device on a second wafer.
Abstract:
A FILM BULK ACOUSTIC RESONATOR FILTER (10) MAY BE FORMED WITH A PLURALITY OF INTERCONNECTED SERIES AND SHUNT FILM BULK ACOUSTIC RESONATORS (38) FORMED ON THE SAME MEMBRANE (35). EACH OF THE FILM BULK ACOUSTIC RESONATORS (38) MAY BE FORMED FROM A COMMON LOWER CONDUCTIVE LAYER WHICH IS DEFINED TO FORM THE BOTTOM ELECTRODE (32) OF EACH FILM BULK ACOUSTIC RESONATOR (38). A COMMON TOP CONDUCTIVE LAYER MAY BE DEFINED TO FORM EACH TOP ELECTRODE (36) OF EACH FILM BULK ACOUSTIC RESONATOR (38). A COMMON PIEZOELECTRIC FILM LAYER (34), THAT MAYOR MAY NOT BE PATTERNED, FORMS A CONTINUOUS OR DISCONTINUOUS FILM. FIG 1 & 9.
Abstract:
A film bulk acoustic resonator filter may be formed with a plurality of interconnected series and shunt film bulk acoustic resonators formed on the same membrane. Each of the film bulk acoustic resonators may be formed from a common lower conductive layer which is defined to form the bottom electrode of each film bulk acoustic resonator. A common top conductive layer may be defined to form each top electrode of each film bulk acoustic resonator. A common piezoelectric film layer, that may or may not be patterned, forms a continuous or discontinuous film.
Abstract:
A film bulk acoustic resonator filter (10) may be formed with a plurality of interconnected series and shunt film bulk acoustic resonators (38) formed on the same membrane (35). Each of the film bulk acoustic resonators (38) may be formed from a common lower conductive layer which is defined to form the bottom electrode (32) of each film bulk acoustic resonator (38). A common top conductive layer may be defined to form each top electrode (36) of each film bulk acoustic resonator (38). A common piezoelectric film layer (34), that may or may not be patterned, forms a continuous or discontinuous film.
Abstract:
A film bulk acoustic resonator filter (10) may be formed with a plurality of interconnected series and shunt film bulk acoustic resonators (38) formed on the same membrane (35). Each of the film bulk acoustic resonators (38) may be formed from a common lower conductive layer which is defined to form the bottom electrode (32) of each film bulk acoustic resonator (38). A common top conductive layer may be defined to form each top electrode (36) of each film bulk acoustic resonator (38). A common piezoelectric film layer (34), that may or may not be patterned, forms a continuous or discontinuous film.
Abstract:
A film bulk acoustic resonator filter (10) may be formed with a plurality of interconnected series and shunt film bulk acoustic resonators (38) formed on the same membrane (35). Each of the film bulk acoustic resonators (38) may be formed from a common lower conductive layer which is defined to form the bottom electrode (32) of each film bulk acoustic resonator (38). A common top conductive layer may be defined to form each top electrode (36) of each film bulk acoustic resonator (38). A common piezoelectric film layer (34), that may or may not be patterned, forms a continuous or discontinuous film.
Abstract:
A film bulk acoustic resonator filter (10) may be formed with a plurality of interconnected series and shunt film bulk acoustic resonators (38) formed on the same membrane (35). Each of the film bulk acoustic resonators (38) may be formed from a common lower conductive layer which is defined to form the bottom electrode (32) of each film bulk acoustic resonator (38). A common top conductive layer may be defined to form each top electrode (36) of each film bulk acoustic resonator (38). A common piezoelectric film layer (34), that may or may not be patterned, forms a continuous or discontinuous film.
Abstract:
A diaphragm includes a substrate having a hole and a sheet of material formed on the substrate and covering the hole. The sheet of material includes one or more corrugations that are substantially free of defects. A method of forming the diaphragm includes forming a corrugated surface free of stringers on the substrate, forming a layer of material on the corrugated surface, and processing the substrate to form the diaphragm including the layer of material.