Abstract:
Methods and apparatus for fabricating a semiconductor die including several target structures. A first layer is formed that includes one or more line or trench structures that extend in a first direction. A second layer is formed that includes one or more line or trench structures that extend in a second direction that is perpendicular to the first structure, such that a projection of the target structure along the first direction is independent of the second direction and a projection of the target structure along the second direction is independent of the first direction. A target structure and a method for generating a calibration curve are also described.
Abstract:
The present invention relates to overlay marks and methods for determining overlay error. One aspect of the present invention relates to a continuously varying offset mark. The continuously varying offset mark is a single mark that includes over laid periodic structures, which have offsets that vary as a function of position. By way of example, the periodic structures may correspond to gratings with different values of a grating characteristic such as pitch. Another aspect of the present invention relates to methods for determining overlay error from the continuously varying offset mark. The method generally includes determining the center of symmetry of the continuously varying offset mark and comparing it to the geometric center of the mark. If there is zero overlay, the center of symmetry tends to coincide with the geometric center of the mark. If overlay is non zero (e.g., misalignment between two layers), the center of symmetry is displaced from the geometric center of the mark. The displacement in conjunction with the preset gain of the continuously varying offset mark is used to calculate the overlay error.
Abstract:
A method for optimizing alignment performance in a fleet of exposure systems involves characterizing each exposure system in a fle of exposure systems to generate a set of distinctive distortion profiles (301) associated with each exposure system The set of distinct distortion profiles are stored in a database (303) A wafer having reference pattern formed thereon is provided for further pattern fabpcation (305) and an exposure system is selected from the fleet to fabricate a next layer on the wafer (307) Linear and higher ord parameters of the selected exposure system are adjusted using the distinctive distortion profiles to model the distortion of the referen pattern (309) Once the exposure system is adjusted, it is used to form a lithographic pattern on the wafer (311).
Abstract:
Disclosed are apparatus and methods for measuring a characteristic, such as overlay, of a semiconductor target. In general, order-selected imaging and/or illumination is performed while collecting an image from a target using a metrology system. In one implementation, tunable spatial modulation is provided only in the imaging path of the system. In other implementations, tunable spatial modulation is provided in both the illumination and imaging paths of the system. In a specific implementation, tunable spatial modulation is used to image side-by-side gratings with diffraction orders ±n. The side-by-side gratings may be in different layers or the same layer of a semiconductor wafer. The overlay between the structures is typically found by measuring the distance between centers symmetry of the gratings. In this embodiment, only orders ±n for a given choice of n (where n is an integer and not equal to zero) are selected, and the gratings are only imaged with these diffraction orders.
Abstract:
A method for optimizing alignment performance in a fleet of exposure systems involves characterizing each exposure system in a fleet of exposure systems to generate a set of distinctive distortion profiles associated with each exposure system. The set of distinctive distortion profiles are stored in a database. A wafer having reference pattern formed thereon is provided for further pattern fabrication and an exposure system is selected from the fleet to fabricate a next layer on the wafer. Linear and higher order parameters of the selected exposure system are adjusted using the distinctive distortion profiles to model the distortion of the reference pattern. Once the exposure system is adjusted, it is used to form a lithographic pattern on the wafer.
Abstract:
A system for imaging an acquisition target or an overlay or alignment semiconductor target (404) is disclosed. The system includes a beam generator for directing at least one incident beam (402) having a wavelength lamda towards a periodic target (404) having structures with a specific pitch p. A plurality of output beams (406) are scattered from the periodic target (404) in response to the at least one incident beam (402). The system further includes an imaging lens system (410) for passing only a first and second output beam (412a, 412b) from the target (404). The imaging system is adapted such that the angular separation between the captured beams, lamda, and the pitch are selected to cause the first and second output beams (412a, 412b) to form a sinusoidal image (414). The system also includes a sensor for imaging the sinusoidal image or images (414), and a controller for causing the beam generator to direct the at least one incident beam (402) towards the periodic target or targets (404), and for analyzing the sinusoidal image or images (414).
Abstract:
Disclosed are methods and apparatus for analyzing the quality of overlay targets. In one embodiment, a method of extracting data from an overlay target is disclosed. Initially, image information or one or more intensity signals of the overlay target are provided. An overlay error is obtained from the overlay target by analyzing the image information or the intensity signal(s) of the overlay target. A systematic error metric is also obtained from the overlay target by analyzing the image information or the intensity signal(s) of the overlay target. For example, the systematic error may indicate an asymmetry metric for one or more portions of the overlay target. A noise metric is further obtained from the overlay target by applying a statistical model to the image information or the intensity signal(s) of the overlay target. Noise metric characterizes noise, such as a grainy background, associated with the overlay target. In other embodiments, an overlay and/or stepper analysis procedure is then performed based on the systematic error metric and/or the noise metric, as well as the overlay data.