一种基于YOLOv8网络的大粒度硅料检测与清除系统

    公开(公告)号:CN116934674A

    公开(公告)日:2023-10-24

    申请号:CN202310432318.6

    申请日:2023-07-25

    Abstract: 本发明提供了一种基于YOLOv8网络的深度学习大粒度硅料检测与清除系统,适用于硅料细分拣选领域。该系统通过高帧率摄像头获取传送带上的硅料图像,并使用labelme手工标注,剔除异常的硅料图片。将图像样本按9:1分为训练集和验证集,对图片进行数据增强以提高泛化能力。以YOLOv8为骨干网络创建YOLO_SI算法,并使用训练数据集得到网络模型。使用该算法检测出图像中的所有硅料,根据预设阈值进行大小预警和跟踪标记,并在到达清除位置时发出清除指令给下位机。通过在预设位置安装喷气口,下位机发送命令给喷气装置,将标记追踪的大粒度硅料有序地剔除。本发明可以高效检测和清除硅料,自动化程度高,有效降低人工依赖,满足矿业拣选需求。

    一种基于LSTM-CNN模型的空气质量检测系统

    公开(公告)号:CN115730684A

    公开(公告)日:2023-03-03

    申请号:CN202211575606.9

    申请日:2022-12-09

    Applicant: 安徽大学

    Abstract: 本发明公开了一种基于LSTM‑CNN模型的空气质量检测系统,属于空气质量检测领域,包括回归学习系统、构建学习模型系统、快速预报系统、发布模块和数据检测系统,所述回归学习系统包括环境数据模块、参数变量模块和数据筛选模块,所述数据筛选模块用于对环境数据模块进行特征选择。本发明所述的一种基于LSTM‑CNN模型的空气质量检测系统,本方案基于机器学习技术的区域空气质量预报系统能够高时效地利用现有的所有信息来定义一个最大可能精准的大气运动状态,本方案在空气质量预报预警中对于PM2.5和臭氧结果进行了优化,本方案能够弥补卫星观测数据的缺失,扩展垂直廓线的遥感观测,从有限点位的观测数据中挖掘出内蕴的变化规律。

    一种矿山井下非结构化特征下的SLAM方法及系统

    公开(公告)号:CN115290073A

    公开(公告)日:2022-11-04

    申请号:CN202210970287.5

    申请日:2022-08-12

    Applicant: 安徽大学

    Abstract: 本发明涉及矿山井下定位与导航技术领域,解决了非结构化环境特征下且GPS无法作用的井下定位与建图难的技术问题,尤其涉及一种矿山井下非结构化特征下的SLAM方法,包括以下过程:获取激光雷达当前激光帧的点云信息;计算激光雷达当前激光帧点云信息中每个点的曲率,并根据每个点的曲率提取每个点的角点特征以及平面点特征;通过相机提取当前帧的信息,根据当前帧的信息采用FAST算法检测当前帧的角点,并判断是否为一个角特征点;根据当前帧的信息采用KLT光流法跟踪算法跟踪当前滑动窗口关键帧的特征点。本发明实现对煤矿井下进行高精度定位,同时平衡了精度与计算量,提高矿山井巷的定位与建图准确率与实时性。

    一种地下矿井重建与定位的方法与系统

    公开(公告)号:CN116309179A

    公开(公告)日:2023-06-23

    申请号:CN202310339058.8

    申请日:2023-04-01

    Abstract: 本发明涉及矿山井巷定位与建图技术领域,为解决非结构化特征下且GNSS无法作用的井下定位与建图困难的技术问题,提出一种地下矿井重建与定位的方法与系统,包括以下内容:前端首先获取激光雷达点云信息,结合IMU预积分信息进行去畸变操作获得可用的点云信息;通过一种新的定义曲率方法获得角点点云和平面点云信息后,通过gfs(greedybasedFeatureselect)再次筛选点云特征,获得最终可用点云群;通过一种改进ICP点云匹配算法进行扫描匹配处理,实现映射和定位;后端采用G2O算法优化参数,通过定义包含边和节点的函数,利用L‑M方法作为迭代策略;回环检测阶段使用一种新的点云词袋算法进行环路闭合检测,最终完成定位与建图。实现了对矿井巷道下进行高鲁棒性建图与定位,同时考虑了精度和计算效率。

Patent Agency Ranking