-
公开(公告)号:CN102433544A
公开(公告)日:2012-05-02
申请号:CN201210007583.1
申请日:2012-01-11
Applicant: 中国科学院上海微系统与信息技术研究所 , 南京航空航天大学
CPC classification number: C23C16/26 , B82Y30/00 , B82Y40/00 , C01B32/186
Abstract: 本发明公开了一种多苯环碳源低温化学气相沉积生长大面积石墨烯的制备方法,以多苯环芳香族碳氢化合物作为碳源,采用碳源分解法或碳源旋涂法在铜箔表面生长出石墨烯。制得的石墨烯表面光滑平整、面积大、层数可控。相比传统的高温CVD法制备石墨烯薄层的方法,其制造成本大大降低,在高温、高频、大功率、光电子及抗辐射电子器件等方面具有巨大的应用潜力。
-
公开(公告)号:CN102433544B
公开(公告)日:2013-07-10
申请号:CN201210007583.1
申请日:2012-01-11
Applicant: 中国科学院上海微系统与信息技术研究所 , 南京航空航天大学
CPC classification number: C23C16/26 , B82Y30/00 , B82Y40/00 , C01B32/186
Abstract: 本发明公开了一种多苯环碳源低温化学气相沉积生长大面积石墨烯的制备方法,以多苯环芳香族碳氢化合物作为碳源,采用碳源分解法或碳源旋涂法在铜箔表面生长出石墨烯。制得的石墨烯表面光滑平整、面积大、层数可控。相比传统的高温CVD法制备石墨烯薄层的方法,其制造成本大大降低,在高温、高频、大功率、光电子及抗辐射电子器件等方面具有巨大的应用潜力。
-
公开(公告)号:CN116752096A
公开(公告)日:2023-09-15
申请号:CN202310561164.0
申请日:2023-05-18
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明公开一种TMDC材料的近常压生长方法以及一种用于TMDC材料近常压生长的MBE装置。在MBE装置中进行TMDC材料的近常压生长,包括步骤:S1:通入氛围气体,实现腔体内近常压下可调的气体氛围;S2:使用光纤耦合激光加热器加热目标衬底,使其升温至材料生长目标温度;S3:打开双温区热蒸发源的挡板,再开启准分子激光器,利用248nm KrF准分子脉冲激光轰击过渡金属元素靶材,实现TMDC材料的近常压生长,利用两级差分反射式高能电子衍射仪进行实时监测。本发明提供了一种新的TMDC材料制备思路,改进MBE设备的主体构造,增加薄膜生长控制的两个新维度:压力与氛围,实现了TMDC材料的近常压生长。
-
公开(公告)号:CN116288734A
公开(公告)日:2023-06-23
申请号:CN202310169837.8
申请日:2023-02-27
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种磁性材料异质结及其制备方法,该方法包括以下步骤:S1,磁性材料单晶准备:将磁性材料单晶置于真空设备腔体内,在真空环境下获得新鲜的原子级洁净表面;S2,将步骤S1制备得到的磁性材料单晶加热除气;S3,磁性材料异质结的制备:将除气结束的磁性材料单晶升温至目标温度退火,在Se、或S、或O束流氛围下进行表面处理,即得。本发明通过表面硒化、或硫化、或氧化的方法在具有层状结构的磁性材料单晶表面实现了高质量薄膜的制备,成功制备高质量磁性材料异质结,为开展磁性、拓扑、以及超导效应之间的相互耦合以及相互作用研究提供材料基础。
-
公开(公告)号:CN103400859B
公开(公告)日:2016-01-20
申请号:CN201310352264.9
申请日:2013-08-13
Applicant: 中国科学院上海微系统与信息技术研究所
IPC: H01L29/78 , H01L29/49 , H01L21/336 , H01L21/28
Abstract: 本发明提供一种基于石墨烯的隧穿场效应管单元、阵列及其形成方法,所述单元至少包括衬底;所述衬底上自下而上依次包括底栅电极、第一电介质层、底层石墨烯、绝缘阻挡层、顶层石墨烯、第二电介质层及顶栅电极;所述底层石墨烯及所述顶层石墨烯为带状石墨烯或石墨烯纳米带;所述带状石墨烯的宽度大于100nm;所述石墨烯纳米带的宽度范围为1~100nm。本发明通过在底层石墨烯及顶层石墨烯之间引入绝缘阻挡层,这样底层石墨烯及顶层石墨烯中载流子浓度可以分别通过加在底栅电极和顶栅电极上的电压进行调节,从而实现器件的较高的开关比。同时顶栅电极和底栅电极可以进行精确的单元选址,实现大规模器件集成运用。
-
公开(公告)号:CN104562195B
公开(公告)日:2017-06-06
申请号:CN201310496579.0
申请日:2013-10-21
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供一种石墨烯的生长方法,至少包括以下步骤:S1:提供一绝缘衬底,将所述绝缘衬底放置于生长腔室中;S2:将所述绝缘衬底加热到预设温度,并在所述生长腔室中引入含有催化元素的气体;S3:在所述生长腔室中通入碳源,在所述绝缘衬底上生长出石墨烯薄膜。本发明通过引入气态催化元素催化方式,在绝缘衬底上快速生长高质量石墨烯,避免了石墨烯的转移过程,能够提高石墨烯的生产产量,而且大大降低了石墨烯的生长成本,有利于批量生产;本发明生长的石墨烯可应用于新型石墨烯电子器件、石墨烯透明导电膜、透明导电涂层等领域。
-
公开(公告)号:CN102392225B
公开(公告)日:2013-12-18
申请号:CN201110206608.6
申请日:2011-07-22
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: B82Y40/00 , B82Y30/00 , C01B32/186 , C01B2204/065
Abstract: 本发明提供了一种在具有原子级平整度解理面的绝缘基底上生长石墨烯纳米带的方法,属于低维材料和新材料领域。该方法包括如下步骤:第一步解理绝缘基底得到具有原子级平整度的解理面并制备单原子层台阶;第二步以具有规则单原子台阶的绝缘基底直接生长石墨烯纳米带。本发明利用了石墨烯在原子台阶和平整解理面上成核功不同的特点,通过调节温度、压强、活性碳原子过饱和度等条件使石墨烯仅沿台阶边缘生长,生长成为尺寸可调的石墨烯纳米带。主要应用于新型石墨烯光电器件领域。
-
公开(公告)号:CN102336588A
公开(公告)日:2012-02-01
申请号:CN201110247262.4
申请日:2011-08-25
Applicant: 中国科学院上海微系统与信息技术研究所
Abstract: 本发明提供了一种具有单原子层台阶的六角氮化硼(hBN)基底及其制备方法,将hBN基底表面解理得到新鲜的解理面,然后用氢气高温下刻蚀六角氮化硼,得到可控的、规则的单原子层台阶。本发明利用了氢气对hBN的各向异性刻蚀作用,通过调节氢气比例、退火温度、退火时间来控制hBN的刻蚀速率和刻蚀程度,达到刻蚀出规则单原子台阶的目的。该制备工艺和化学气相沉积法制备石墨烯的工艺相兼容,可以用于石墨烯纳米带的制备。主要应用于新型石墨烯电子器件。
-
公开(公告)号:CN104726845B
公开(公告)日:2018-05-01
申请号:CN201510098675.9
申请日:2015-03-05
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: H01L21/02527 , C01B32/182 , C01B2204/06 , H01L21/02389 , H01L21/0243 , H01L21/0259 , H01L21/0262 , H01L21/02658
Abstract: 本发明提供一种h‑BN上石墨烯纳米带的制备方法,包括:1)采用金属催化刻蚀方法于h‑BN上形成具有纳米带状沟槽结构的h‑BN沟槽模板;2)采用化学气相沉积方法于所述h‑BN沟槽模板中的生长石墨烯纳米带。本发明采用CVD方法直接在h‑BN上制备形貌可控的石墨烯纳米带,解决了长期以来石墨烯难以在绝缘衬底上形核生长的关键问题,避免了石墨烯转移及裁剪加工成纳米带等复杂工艺将引入的一系列问题。另外,本发明还具有以下优点:一方面可以提高石墨烯质量实现载流子高迁移率,另一方面通过控制石墨烯形貌如宽度、边缘结构实现调控石墨烯的电子结构,在提高石墨烯性能的同时,简化了石墨烯制备工艺,降低生产成本,以便于石墨烯更广泛地应用于电子器件的制备。
-
公开(公告)号:CN104726845A
公开(公告)日:2015-06-24
申请号:CN201510098675.9
申请日:2015-03-05
Applicant: 中国科学院上海微系统与信息技术研究所
CPC classification number: H01L21/02527 , C01B32/182 , C01B2204/06 , H01L21/02389 , H01L21/0243 , H01L21/0259 , H01L21/0262 , H01L21/02658
Abstract: 本发明提供一种h-BN上石墨烯纳米带的制备方法,包括:1)采用金属催化刻蚀方法于h-BN上形成具有纳米带状沟槽结构的h-BN沟槽模板;2)采用化学气相沉积方法于所述h-BN沟槽模板中的生长石墨烯纳米带。本发明采用CVD方法直接在h-BN上制备形貌可控的石墨烯纳米带,解决了长期以来石墨烯难以在绝缘衬底上形核生长的关键问题,避免了石墨烯转移及裁剪加工成纳米带等复杂工艺将引入的一系列问题。另外,本发明还具有以下优点:一方面可以提高石墨烯质量实现载流子高迁移率,另一方面通过控制石墨烯形貌如宽度、边缘结构实现调控石墨烯的电子结构,在提高石墨烯性能的同时,简化了石墨烯制备工艺,降低生产成本,以便于石墨烯更广泛地应用于电子器件的制备。
-
-
-
-
-
-
-
-
-