基于网格搜寻的机/船协同触发通信路径跟踪控制方法

    公开(公告)号:CN118170014A

    公开(公告)日:2024-06-11

    申请号:CN202410208649.6

    申请日:2024-02-26

    Abstract: 本发明公开了一种基于网格搜寻的机/船协同触发通信路径跟踪控制方法,基于机/船协同系统的搜寻半径,建立覆盖搜寻海域的搜寻网格,并建立了基于搜寻网格的虚拟船VS的参考路径,进而获取虚拟机VA的参考路径,并基于虚拟船VS和虚拟机VA的触发通信机制,获取触发规则;最终得到解决了用于镇定机/船协同系统与参考路径之间的位置和姿态误差的虚拟控制律,基于虚拟控制律,驱动机/船协同系统,实现海事搜寻任务的执行。本发明解决了通信限制条件下的机/船路径协同问题,确保机/船协同系统能够以低通信负载完成基于网格的海事搜寻路径跟踪任务,对完善机/船协同控制理论和加快理论算法工程应用具有潜在应用价值。

    基于触发制导和自更新阈值的ASV预设性能控制方法

    公开(公告)号:CN116360260B

    公开(公告)日:2023-10-20

    申请号:CN202310287839.7

    申请日:2023-03-22

    Abstract: 本发明公开了一种基于触发制导和自更新阈值的ASV预设性能控制方法,包括:S1:建立3自由度ASV的非线性数学模型和ASV的虚拟参考路径模型;S2:获取ASV的制导律;S3:获取基于有限边界触发圆的制导律;S4:获取ASV的虚拟控制律;S5:获取虚拟控制律的动态面信号:S6:获取动态事件触发机制;S7:获取ASV主机转速命令和ASV舵角命令;S8:获取ASV预设性能控制器的设计参数,以对ASV进行控制。本发明通过构建基于有限边界触发圆的制导律,降低了参考信号的传输频率,降低制导系统的通信负载。通过虚拟控制律的动态面信号,解决了触发阈值需要人为设计的问题,提高了ASV的控制精度。

    基于性能优化的帆式船舶风电场自主巡航控制方法

    公开(公告)号:CN119225365A

    公开(公告)日:2024-12-31

    申请号:CN202411334777.1

    申请日:2024-09-24

    Abstract: 本发明公开了一种基于性能优化的帆式船舶风电场自主巡航控制方法,通过引入移位函数,获取转筒帆船的位置移位误差和艏向移位误差,以基于误差转变技术,获取考虑转筒帆船预设性能的转筒帆船的位置转变误差和转筒帆船的艏向转变误差;并结合动态面技术设计转筒帆船的主机转速控制器和舵角控制器,获取转筒帆船的主机转速和舵角,实现对帆式船舶风电场的自主巡航控制。本发明能够满足狭窄航道或多障碍物水域的高跟踪精度要求,大大提高船舶的跟踪精度,满足复杂水域的高跟踪精度需求。同时,能够有效保障船舶在恶劣海况下的自主巡航任务,为保障船舶的瞬态性能和稳态性能提供了有力的保证,为转筒帆船在复杂水域的安全航行提供了关键技术支持。

    基于触发制导和自更新阈值的ASV预设性能控制方法

    公开(公告)号:CN116360260A

    公开(公告)日:2023-06-30

    申请号:CN202310287839.7

    申请日:2023-03-22

    Abstract: 本发明公开了一种基于触发制导和自更新阈值的ASV预设性能控制方法,包括:S1:建立3自由度ASV的非线性数学模型和ASV的虚拟参考路径模型;S2:获取ASV的制导律;S3:获取基于有限边界触发圆的制导律;S4:获取ASV的虚拟控制律;S5:获取虚拟控制律的动态面信号:S6:获取动态事件触发机制;S7:获取ASV主机转速命令和ASV舵角命令;S8:获取ASV预设性能控制器的设计参数,以对ASV进行控制。本发明通过构建基于有限边界触发圆的制导律,降低了参考信号的传输频率,降低制导系统的通信负载。通过虚拟控制律的动态面信号,解决了触发阈值需要人为设计的问题,提高了ASV的控制精度。

    一种面向船舶轨迹重现任务的高精度路径跟踪控制方法

    公开(公告)号:CN118331270A

    公开(公告)日:2024-07-12

    申请号:CN202410493170.1

    申请日:2024-04-23

    Abstract: 本发明公开了一种面向船舶轨迹重现任务的高精度路径跟踪控制方法,所述方法包括以下步骤:基于AIS数据的航路点,根据逻辑虚拟船LVS获取虚拟参考路径;基于虚拟参考路径,根据逻辑虚拟船LVS的数学模型与USV的非线性数学模型获取USV制导律;基于跟踪距离判定策略,根据USV制导律获取USV虚拟控制律,以获取动态面信号导数;根据获取的动态面信号导数获取USV控制器的中间变量,并采用迭代控制技术根据中间变量构建USV容错控制器;根据USV容错控制器控制USV对虚拟参考路径进行实时路径跟踪控制。本发明解决了传统的制导算法的参考路径无法对短距离或不规则产生的航路点进行路径跟踪任务;且现有的控制算法仅适用于开阔水域的船舶路径跟踪,无法满足某些特定水域的高跟踪精度需求,此外船舶路径跟踪过程中可能会存在输入饱和或者计算负载过大的问题,从而导致执行器发生故障,这也成为了亟待解决的问题。

    基于自反馈扩张状态观测器的船舶抗欺骗攻击控制方法

    公开(公告)号:CN119882750A

    公开(公告)日:2025-04-25

    申请号:CN202510071069.1

    申请日:2025-01-16

    Abstract: 本发明公开了一种基于自反馈扩张状态观测器的船舶抗欺骗攻击控制方法,包括设定制导虚拟船舶与动态虚拟船舶以构建L2‑DVS制导策略;构建无人船的欺骗攻击附加信号模型,并根据目标无人船的运动学模型获取欺骗攻击下的船舶位置信号;根据构建的误差模型获取目标无人船的纵向速度虚拟控制律与偏航角的欺骗攻击补偿律,以得到横摆角速度虚拟控制律/自适应律;构建状态记忆型的事件触发机制,并结合自反馈补偿的降阶扩张状态观测器获取目标无人船的舵角/转速的控制器/自适应律,根据横摆角速度虚拟控制律/自适应律、舵角/转速的控制器/自适应律,实现目标无人船的抗欺骗攻击控制。解决了目前网络攻击环境下的应用的研究还不够完备,由于无人船在海洋环境中会一直受到扰动而执行器会对这些扰动不断响应,大大增加了舵机过度磨损的问题。

    基于机艇协同的海上风电吊舱精细化巡检方案设计方法

    公开(公告)号:CN118584998B

    公开(公告)日:2025-03-25

    申请号:CN202410617328.1

    申请日:2024-05-17

    Abstract: 本发明公开了一种基于机艇协同的海上风电吊舱精细化巡检方案设计方法,通过机船协同系统的运动学方程获取无人机与无人船的实际位置信息,且根据待巡检的海上风电吊舱获取待巡检的海上风机吊舱的巡检航路点,通过主导航路点与从属航路点为无人船与无人机共同规划巡检路径,以避免了重复设置航路点造成的存储资源占用;基于虚拟无人船与虚拟无人机的运动模型,并根据巡检航路点获取机船协同系统的位置参考信号;根据所实际位置信息与位置参考信号获取巡检相对方位角,并根据巡检相对方位角设计控制器,以实现海上风电吊舱的巡检任务。本发明避免了高昂的优化运算成本与时间消耗问题,对复杂多变的海洋环境和不同的任务场景,能快速做出调整与决策,实时更新协同系统的位置及姿态信息,以有效实现路径规划与调整。

    一种基于微分博弈的船舶编队协同避障与鲁棒控制方法

    公开(公告)号:CN119575973A

    公开(公告)日:2025-03-07

    申请号:CN202411716048.2

    申请日:2024-11-27

    Abstract: 本发明公开了一种基于微分博弈的船舶编队协同避障与鲁棒控制方法,包括构建船舶避障函数,并基于第一性能指标函数设计最优虚拟控制律;构建用于镇定船舶位置动力学误差的第二性能指标函数,并结合第一最优价值函数获取船舶海洋状态干扰;设计用于镇定船舶状态动力学误差的第三性能指标函数以获取最优响应控制器;根据最优响应控制器获取艏向虚拟控制律;对艏向虚拟控制律的导数进行降阶处理,以获取艏摇运动动力学误差;构建用于描述艏摇运动干扰的第四性能指标函数,并结合第二最优价值函数获取船舶艏摇运动干扰;设计用于镇定船舶艏摇运动动力学误差的第五性能指标函数获取最优鲁棒控制器。本发明解决了目前已有船舶编队运动控制工程实践中“人工势场法不利于船舶高精度与安全航行”与“干扰观测器在海洋环境干扰中鲁棒性较弱”这两点技术问题。

    具有性能博弈机制的船舶轨迹跟踪事件触发控制方法及系统

    公开(公告)号:CN119310999A

    公开(公告)日:2025-01-14

    申请号:CN202411416726.3

    申请日:2024-10-11

    Abstract: 本发明实施例公开了一种具有性能博弈机制的船舶轨迹跟踪事件触发控制方法及系统,方法包括:S1、确定出船舶对应的位置误差和姿态误差;S2、设计第一性能指标和第一价值函数;S3、设计第一价值函数的负梯度估计值、最优虚拟控制律及在线学习律;S4、获得动力学参考信号及动力学控制误差;S5、定义第二性能指标和对应的第二价值函数;S6、设计第二价值函数对应的负梯度估计值、最优控制输入和最优触发误差;S7、判断是否满足触发规则;S8、改变船舶状态继续判断是否完成航行任务,未完成则重新确认船舶当前状态并返回S1。本发明解决了现有技术中“操作者难以得到最佳的触发效果和控制精度”与“船舶轨迹跟踪控制器在海洋环境干扰中鲁棒性较弱”的问题。

Patent Agency Ranking