Abstract:
A micromechanical component for a sensor or microphone device. An electrode surface of a first electrode structure is aligned with a second electrode structure. A substructure of the first electrode structure is entirely made of at least one electrically conductive material. The electrode surface and an opposite surface of the first electrode structure are outer surfaces of the substructure. A stop structure protruding from the electrode surface towards the second electrode structure is formed on the first electrode structure. The first electrode structure includes an insulating region which extends from the electrode surface to the opposite surface of the first electrode structure. The stop structure is formed either as a projection of the at least one insulating region protruding from the electrode surface towards the second electrode structure or is bordered by the at least one insulating region.
Abstract:
In described examples, a cavity is formed between a substrate and a cap. One or more access holes are formed through the cap for removing portions of a sacrificial layer from within the cavity. A cover is supported by the cap, where the cover is for occulting the one or more access holes along a perspective. An encapsulant seals the cavity, where the encapsulant encapsulates the cover and the one or more access holes.
Abstract:
A MEMS device includes a backplate electrode and a membrane disposed spaced apart from the backplate electrode. The membrane includes a displaceable portion and a fixed portion. The backplate electrode and the membrane are arranged such that an overlapping area of the fixed portion of the membrane with the backplate electrode is less than maximum overlapping.
Abstract:
A variable capacitance device that includes a semiconductor substrate, a redistribution layer disposed on a surface of the semiconductor substrate, and a plurality of terminal electrodes including first and second input/output terminals, a ground terminal and a control voltage application terminal. Moreover, a variable capacitance element section is formed in the redistribution layer from a pair of capacitor electrodes connected to the first and second input/output terminals, respectively, and a ferroelectric thin film disposed between the capacitor electrodes. Further, an ESD protection element is connected between the one of the input/output terminals and the ground terminal is formed on the surface of the semiconductor substrate.
Abstract:
According to one embodiment, an electronic device includes a base region, an element portion located on the base region, the element portion including a movable portion, and a protective film overlying the element portion and forming a cavity on an inner side of the protective film. The protective film includes a first protective layer and a second protective layer located on the first protective layer. A hole extends in a direction parallel to a main surface of the base region, and the second protective layer covers the hole.
Abstract:
An electrostatic actuator includes: a fixed driving electrode that is disposed on a silicon substrate; a movable driving electrode that is disposed so as to face the fixed driving electrode and approaches the fixed driving electrode with an electrostatic force generated between the movable driving electrode and the fixed driving electrode; and a pair of spacers that comes in contact with the movable driving electrode in an approaching state in which the fixed driving electrode and the movable driving electrode approach each other and forms a prescribed air gap between the fixed driving electrode and the movable driving electrode, wherein each of the spacers has a spacer electrode portion that comes in contact with the movable driving electrode via an insulator and has the same potential as one of the electrodes at least in the approaching state.
Abstract:
A mechanism for reducing stiction in a MEMS device by decreasing surface area between two surfaces that can come into close contact is provided. Reduction in contact surface area is achieved by increasing surface roughness of one or both of the surfaces. The increased roughness is provided by forming a micro-masking layer on a sacrificial layer used in formation of the MEMS device, and then etching the surface of the sacrificial layer. The micro-masking layer can be formed using nanoclusters. When a next portion of the MEMS device is formed on the sacrificial layer, this portion will take on the roughness characteristics imparted on the sacrificial layer by the etch process. The rougher surface decreases the surface area available for contact in the MEMS device and, in turn, decreases the area through which stiction can be imparted.
Abstract:
A MEMS device includes a backplate electrode and a membrane disposed spaced apart from the backplate electrode. The membrane includes a displaceable portion and a fixed portion. The backplate electrode and the membrane are arranged such that an overlapping area of the fixed portion of the membrane with the backplate electrode is less than maximum overlapping.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming at least one fixed electrode on a substrate. The method further includes forming a Micro-Electro-Mechanical System (MEMS) beam with a varying width dimension, as viewed from a top of the MEMS beam, over the at least one fixed electrode.
Abstract:
A MEMs actuator device and method of forming includes arrays of actuator elements. Each actuator element has a moveable top plate and a bottom plate. The top plate includes a central membrane member and a cantilever spring for movement of the central membrane member. The bottom plate consists of two RF signal lines extending under the central membrane member. A MEMs electrostatic actuator device includes a CMOS wafer, a MEMs wafer, and a ball bond assembly. Interconnections are made from a ball bond to an associated through-silicon-via (TSV) that extends through the MEMS wafer. A RF signal path includes a ball bond electrically connected through a TSV and to a horizontal feed bar and from the first horizontal feed bar vertically into each column of the array. A metal bond ring extends between the CMOS wafer and the MEMS wafer. An RF grounding loop is completed from a ground shield overlying the array to the metal bond ring, a TSV and to a ball bond.