Abstract:
An approach for controlling ultraviolet intensity over a surface of a light sensitive object is described. Aspects involve using ultraviolet radiation with a wavelength range that includes ultraviolet-A and ultraviolet-B radiation to irradiate the surface. Light sensors measure light intensity at the surface, wherein each sensor measures light intensity in a wavelength range that corresponds to a wavelength range emitted from at least one of the sources. A controller controls the light intensity over the surface by adjusting the power of the sources as a function of the light intensity measurements. The controller uses the light intensity measurements to determine whether each source is illuminating the surface with an intensity that is within an acceptable variation with a predetermined intensity value targeted for the surface. The controller adjusts the power of the sources as a function of the variation to ensure an optimal distribution of light intensity over the surface.
Abstract:
The present invitation relates to an optical radiation measurement method based on light filter units, comprising the steps of: 1) providing characteristic filter units and correction light filter units in front of detection units to obtain multiple measured response values of an object to be detected; and, 2) selecting one or more sampling regions within a waveband to be detected, and calculating, according to a corresponding simultaneous expression/equation system of the measured response values, a spectral power distribution within the waveband to be detected. In this method, by introducing a small number of correction light filter units, the spectral power distribution within the entire waveband to be detected can be obtained without using a large number of narrow waveband color filters. In addition, a light radiation measurement apparatus is disclosed.
Abstract:
An electronic device may have a display with a brightness that is adjusted based on data gathered from one or more ambient light sensors (ALSs). In one suitable arrangement, an ALS may include a photodiode, a temperature sensor, a scaler, an analog-to-digital converter (ADC), and a subtractor. The subtractor may have a first input coupled to the photodiode via the ADC, a second input coupled to the temperature sensor via the scaler, and an output on which a leakage-compensated sensor output is provided. In another suitable arrangement, the ALS may include first and second photodiodes, a light blocking layer formed over the second photodiode, a scaler, and a subtractor. The subtractor may have a first input coupled to the first photodiode, a second input coupled to the second photodiode via the scaler, and an output on which a leakage-compensated sensor output is provided.
Abstract:
An apparatus, a microscope having an apparatus, and a method for calibration of a photosensor chip (19) are disclosed. The apparatus has a photosensor chip (19) which has a multiplicity of light-sensitive elements. A reference light source (30) is provided and directs the light at at least one part of the photosensor chip (19). In addition, an open-loop or closed-loop control unit (19a) is provided and determines and corrects variances between the individual light-sensitive elements.
Abstract:
The invention relates to a photodetector arrangement for stray light compensation with a photodetector unit for detecting and determining at least two measuring signals and with a differential unit for subtraction of the measuring signals, wherein between the photodetector unit and the differential unit a compensation unit is provided for compensating the constant components forming the basis of the respective measuring signal.
Abstract:
A material inspection apparatus includes a light source, a light receiver, a light converter, and a processing unit. The light source is configured to emit light to a surface of an object to be inspected. The light receiver is configured to receive light reflected from the surface of the object. The light converter is configured to convert the light received by the light receiver into an electric current. The processing unit is configured to determine, according to the electric current, a material of the surface of the object.
Abstract:
A method of an optical detecting device for synchronizing an exposure timing sequence of an image detector with a light emitting timing sequence of a reference light source is disclosed. The method includes capturing a continued image set according to a predetermined period, analyzing intensity variation of the continued image set, and adjusting the exposure timing sequence of an image detector according to the intensity variation, so as to synchronize the exposure timing sequence of the image detector with the light emitting timing sequence of the reference light source.
Abstract:
Embodiments of the present invention generally describe systems, devices, and methods for directly measuring pulse profiles during pulse delivery. In some embodiment, the pulse profiles may be measured while the pulse is delivered to ablate a material. Embodiments, may calculate ablation spot parameters based on the pulse profiles and may refine one or more subsequent laser pulses based on deviations from the calculated ablation spot parameters from desired ablation spot parameters. In some embodiments, a fluence profiler is provided. The fluence profiler may measure a pulse profile of a laser pulse from a portion of the laser pulse. The fluence profiler may utilize a UV radiation energy sensor device and a camera-based imager. The measurements from the UV radiation energy sensor device and the camera-based imager may be combined and scaled to provide a measured pulse profile that corresponds to the delivered pulse.
Abstract:
An electronic device may have a display with a brightness that is adjusted based on data gathered from one or more ambient light sensors (ALSs). In one suitable arrangement, an ALS may include a photodiode, a temperature sensor, a scaler, an analog-to-digital converter (ADC), and a subtractor. The subtractor may have a first input coupled to the photodiode via the ADC, a second input coupled to the temperature sensor via the scaler, and an output on which a leakage-compensated sensor output is provided. In another suitable arrangement, the ALS may include first and second photodiodes, a light blocking layer formed over the second photodiode, a scaler, and a subtractor. The subtractor may have a first input coupled to the first photodiode, a second input coupled to the second photodiode via the scaler, and an output on which a leakage-compensated sensor output is provided.
Abstract:
The present invention comprises an approach for calibrating the sensitivity to polarization, optics degradation, spectral and stray light response functions of instruments on orbit. The concept is based on using an accurate ground-based laser system, Ground-to-Space Laser Calibration (GSLC), transmitting laser light to instrument on orbit during nighttime substantially clear-sky conditions. To minimize atmospheric contribution to the calibration uncertainty the calibration cycles should be performed in short time intervals, and all required measurements are designed to be relative. The calibration cycles involve ground operations with laser beam polarization and wavelength changes.