Abstract:
Disclosed herein is a microelectrode platform that may be used for multiple biosystem applications including cell culturing techniques and biosensing. Also disclosed are microfabrication techniques for inexpensively producing microelectrode platforms.
Abstract:
An object of the present invention is to provide an anti-adhesive/anti-clogging and/or color marked/tinted micro-capillary tube (microtube), microneedle, or micropipette. Typically, the color/tint will be selected such that the tip of the microneedle or micropipette is in contrast (e.g., visually) to the biological material. The tint/color may be selected to contrast the stained biological material. In some aspects, the color mark comprises nanoparticles that are modified by adding a non-adhesive coating/material that minimizes protein adhesion/adsorption. The microtubes and/or micropipettes may be treated with an anti-clogging reagent and an anti-adhesive reagent to prevent or reduce clogging and adhesion of the micropipette or microneedle to biological materials. The microtubes and/or micropipettes may be formed using additive printing processes and additive manufacturing techniques or from micropipette and microneedle pullers.
Abstract:
In an implantable hybrid lead and a method of manufacturing the implantable hybrid lead, the implantable hybrid lead includes a conduit, a line electrode and a plurality of electrode terminals. The conduit has a fine channel through which a medicine is injected. The line electrode is inserted to and is combined with an outside of the conduit, and applies electrical simulation to a selected portion of a living body. A plurality of electrode terminals is disposed at an end of the conduit by a predetermined distance.
Abstract:
The present invention relates to a method of manufacturing a microstructure, including: (a) forming a solid on a substrate; (b) fluidizing the solid by adding a solvent thereto; and (c) shaping the fluidized solid, and a microstructure manufactured using the method.
Abstract:
A method of forming microneedles where through a series of coating and etching processes microneedles are formed from a surface as an array. The microneedles have a bevelled end and bore which are formed as part of the process with no need to use a post manufacturing process to finish the microneedle.
Abstract:
A method for fabricating a three-dimensional integrated circuit device includes providing a first substrate having a first crystal orientation, forming at least one or more PMOS devices overlying the first substrate, and forming a first dielectric layer overlying the one or more PMOS devices. The method also includes providing a second substrate having a second crystal orientation, forming at least one or more NMOS devices overlying the second substrate, and forming a second dielectric layer overlying the one or more NMOS devices. The method further includes coupling the first dielectric layer to the second dielectric layer to form a hybrid structure including the first substrate overlying the second substrate.
Abstract:
Out-of-plane microneedle manufacturing process comprising the simultaneous creation of a network of microneedles and the creation of a polygonal shaped hat (2) above each microneedle (1) under formation, said process comprising the following steps: providing bridges (3) between the hats (3), maintaining the bridges (3) during the remaining microneedle manufacturing steps, removing the bridges (3), together with the hats (2), when the microneedles (1) are formed.
Abstract:
A method of forming microneedles where through a series of coating and etching processes microneedles are formed from a surface as an array. The microneedles have a bevelled end and bore which are formed as part of the process with no need to use a post manufacturing process to finish the microneedle.
Abstract:
A method of producing projections on a patch including providing a mask on a substrate and etching the substrate using an etchant and a passivant to thereby control the etching process and form the projections, wherein the passivant does not include oxygen.
Abstract:
Out-of-plane microneedle manufacturing process comprising the simultaneous creation of a network of microneedles and the creation of a polygonal shaped hat (2) above each microneedle (1) under formation, said process comprising the following steps: providing bridges (3) between the hats (3), maintaining the bridges (3) during the remaining microneedle manufacturing steps, removing the bridges (3), together with the hats (2), when the microneedles (1) are formed.