Abstract:
A semiconductor light reception module is provided with a stem, a cap covering the stem, a holder superimposed on the cap, and a receptacle inserted into the holder. The holder has a main body section covering the lens in the cap. An opening passing from the opposite side of the cap through the main body section and reaching the lens is provided in the main body section of the holder. A fixing screw is inserted into a screw hole provided in the holder and a screw tip of a screw main body section of the fixing screw abuts against a side surface of the receptacle.
Abstract:
The present disclosure discloses an optical module package structure and method thereof. The optical module includes a substrate, a shield, a photosensitive unit and a cover. The shield is disposed on the top of the substrate and forms a first housing space with the upper surface of the substrate. The photosensitive unit is disposed on the substrate and located in the first housing space. The shield has a light-receiving part above the photosensitive unit. At least one notch is on the outer surface of the shield. A cushion is disposed on the notch and protrudes on the upper surface of the shield. The cover is disposed on the cushion(s) and kept a constant distance to the upper surface of the shield by contacting with the cushion(s).
Abstract:
An optical transmission module includes: a package; a plurality of light-emitting elements each emitting light in the interior of the package; a beam splitter splitting the light into transmitted light and split light; a plurality of light-receiving elements each including a light-receiving surface on which the split light is incident in the interior of the package, for monitoring light outputs of the plurality of light-emitting elements; and a first light-shielding film provided between the plurality of light-emitting elements and the beam splitter and including a plurality of first holes for the light to propagate to the beam splitter, wherein the plurality of light-receiving elements are disposed with the light-receiving surfaces facing the beam splitter.
Abstract:
Presented here are devices and methods to correct ambient light measurements made in the presence of optical elements, such as the curved edge of the cover glass associated with the mobile device. In one embodiment, a film with optical properties is placed within the ambient light sensor to diffuse the high-intensity light beam coming from the optical element. In another embodiment, an aperture associated with the ambient light sensor is disposed to prevent the high-intensity light beam from entering the ambient light sensor. In another embodiment, a processor coupled to the ambient light sensor smoothes the peak associated with the high intensity light beam produced by the optical element.
Abstract:
An object of the present invention is to provide a photosensor unit with a structure which is simple and also does not cause decrease in detection accuracy. Provided is a photosensor unit including a light emitting element 1 and a light receiving element 2 housed in a unit case 3, and configured such that reflected light of detection light emitted from the light emitting element 1 to the outside of the unit case 3 is received with the light receiving element 2, the reflected light being reflected from the outside of the unit case 3. A plurality of the light emitting elements 1 are disposed around the light receiving element 2, and a passage space for the reflected light inside the unit case 3 is separated from a passage space for the detection light inside the unit case 3 by an appropriate partition 4.
Abstract:
An optical sensing circuit has a plurality of optical sensing units arranged so that the optical sensing circuit is ambient light insensitive or sensitive to light within certain spectrum. The sensitive spectra corresponding to the plurality of optical sensing units are different from one another.
Abstract:
The invention relates to a UV light sensor produced in a CMOS method, comprising a substrate that has a surface, one or more sensor elements that detect radiation and are designed in said substrate, at least one passivation layer arranged over said substrate surface, and a functional layer that is arranged over said passivation layer and designed in the form of at least one filter. The problem addressed by the invention of providing a UV light sensor which is sensitive exclusively within the UV wavelength range is solved, in terms of arrangement, by means of filters designed directly on a planar passivation layer, and stray light suppressing means around said at least one sensor element and/or around the UV light sensor. In terms of the method, the problem is solved by measuring two output signal from at least two photo diodes fitted with different filters, and by determining a mathematical relationship between the two output signals.
Abstract:
An infrared detector system is provided for detecting infrared radiation from an infrared radiation source or a scene. The system includes a first area that is semiconductor-based and biased to produce negative luminescence, the first area including at least one semiconductor-based detector. The detector system further includes at least one additional area being semiconductor-based and biased to produce negative luminescence. A low-emissivity specular retro-reflector shield is configured to reflect infrared radiation and covers the first area and the at least one additional area. The shield defines an aperture to allow the at least one semiconductor-based detector to receive incident rays of the infrared radiation from the infrared radiation source or the scene via a low-scatter, low-emission optical system such that the radiation incident from the infrared radiation source or scene substantially fills the solid angle defined by the aperture at any point in the first area.
Abstract:
A measurement system for measuring blood characteristics includes a controller, an emitter, a sensor, a reference photo sensor, and a mask. The emitter emits light at a plurality of wavelengths from a first side of a blood flow channel to a second side of the blood flow channel. The sensor is provided on the second side of the blood flow channel. The reference photo sensor is provided on the first side of the blood flow channel. The mask is provided on the first side blocking reflected light other than from the light from the emitter to enter the reference photo sensor. The controller compensates measurements from the sensor based upon measurements from the reference photo sensor.
Abstract:
A light source includes a light generating chamber and a collector disposed in the light generating chamber. A target material generator configured to propel a quantity of target material toward an irradiation region is disposed in front of a reflective surface of the collector. A plurality of photodetector modules is disposed external to the light generating chamber, with each of the photodetector modules being directed toward the irradiation region. A plurality of tubes is disposed between a corresponding photodetector module and the irradiation region. Each tube has a centerline directed toward the irradiation region, and each tube has a roughened inner surface. The surface roughness of the roughened inner surface is sufficient to cause grazing incidences of light to be eliminated rather than to be reflected off the roughened inner surface. A method of generating light and a method of measuring light energy also are described.