Abstract:
Embodiments include n apparatus including a color sensor including a transmitter portion and a receiver portion, the transmitter portion including a light source operable to generate and transmit a light having a particular range of wavelengths, the receiver portion including a first detector operable to receive a first portion of the light emitted from the transmitter portion and to measure a luminance of the received first portion of the emitted light, and a second detector including a polarization filter, the second detector operable to receive a second portion of the light emitted from the transmitter after the second portion has passed through the polarization filter, and operable to measure a pure color of the received second portion of transmitted light.
Abstract:
A spectrometer generates Vibrational Circular Dichroism (VCD) measurements having an exceedingly high signal-to-noise ratio, as well as a greater wavelength range over which measurements may be accurately provided. This is achieved by utilizing reflective optics (preferably solely reflective optics, i.e., no refractive elements) to supply a concentrated and collimated input light beam to a sample within a sample cell, and similarly collecting the light output from the sample cell via reflective optics for supply to a detector.
Abstract:
Gas purge systems and methods and a spectroscopic ellipsometer are disclosed. A purge gas system may include an input beam optics housing, a collection optics housing and a gas purge manifold. The input beam optics housing may include a first gas flow path between a first gas inlet and an aperture in a first nose cone proximate a measurement position. The collection optics housing may include a second gas flow path between a second gas inlet and an aperture in a second nose cone proximate the measurement position. The gas purge manifold may be disposed between the input beam optics housing and the collection optics housing. The gas purge manifold has a third gas flow path between a third gas inlet and an aperture in the gas manifold proximate the measurement position. The ellipsometer may include input beam optics in the input beam optics housing and collection optics in the collection optics housing. First, second, and third flows of purge gas may be supplied through the input beam optics housing, collection optics housing and gas purge manifold respectively. The purge gas is delivered directly to a measurement position of a surface of a substrate through the gas purge manifold, the first nosecone and the second nose cone.
Abstract:
Plural electronic or optical images are provided in a streak optical system, as for instance by use of plural slits instead of the conventional single slit, to obtain a third, fourth etc. dimension—rather than only the conventional two, namely range or time and azimuth. Such additional dimension or dimensions are thereby incorporated into the optical information that is to be streaked and thereby time resolved. The added dimensions may take any of an extremely broad range of forms, including wavelength, polarization state, or one or more spatial dimensions—or indeed virtually any optical parameter that can be impressed upon a probe beam. Resulting capabilities remarkably include several new forms of lidar spectroscopy, fluorescence analysis, polarimetry, spectropolarimetry, and combinations of these.
Abstract:
In a device for measuring the complete polarization state of light over a spectral bandwidth, an optical input signal (41) with wavelengths of light within a spectral band is incident on two or more diffraction gratings (42, 44, 46, 48), or incident from at least two directions on one or more diffraction gratings (72, 74), and the intensity is measured as a function of wavelength for at least four of the diffraction spectra produced by the grating(s). The polarization state of light is then calculated as a function of wavelength over the spectral bandwidth from the intensity measurements.
Abstract:
A method for determining analyte concentration levels is provided. The method includes acquiring radiation scattered off or transmitted by a target, analyzing at least a first portion of the radiation via a first technique to generate a first measurement of analyte concentration levels, and analyzing at least a second portion of the radiation via a second technique to generate a second measurement of analyte concentration levels. The method further determines analyte concentration levels based on at least one of the first measurement or the second measurement. In addition, a system for implementing the method and a probe for measuring and monitoring the analyte concentration levels is provided.
Abstract:
A gallery of seed profiles is constructed and the initial parameter values associated with the profiles are selected using manufacturing process knowledge of semiconductor devices. Manufacturing process knowledge may also be used to select the best seed profile and the best set of initial parameter values as the starting point of an optimization process whereby data associated with parameter values of the profile predicted by a model is compared to measured data in order to arrive at values of the parameters. Film layers over or under the periodic structure may also be taken into account. Different radiation parameters such as the reflectivities Rs, Rp and ellipsometric parameters may be used in measuring the diffracting structures and the associated films. Some of the radiation parameters may be more sensitive to a change in the parameter value of the profile or of the films then other radiation parameters. One or more radiation parameters that are more sensitive to such changes may be selected in the above-described optimization process to arrive at a more accurate measurement. The above-described techniques may be supplied to a track/stepper and etcher to control the lithographic and etching processes in order to compensate for any errors in the profile parameters.
Abstract:
Designs, implementations, and techniques for optically measuring a sample to obtain spectral absorbance map of the sample. Light at different wavelength bands may be used to detect different absorption features in the sample. Multiple light sources may be used including tunable lasers.
Abstract:
An imaging spectropolarimeter for measuring the polarization and spectral content and the spatial signature of a target scene. The imaging spectropolarimeter includes an objective optic for receiving an electromagnetic signal and a modulator for modulating the electromagnetic signal The amplitude of each frequency component of the resulting modulated electromagnetic signal is a function of the particular polarization state of each frequency component of the electromagnetic signal. A linear polarizer passes a single polarization of the modulated electromagnetic signal to a tunable filter, which is tunable through a frequency spectrum. The tunable filter outputs a plurality of electromagnetic signal samples at predetermined frequency increments. A focal plane array receives each electromagnetic signal sample and outputs a spectrum signal and a processor applies Fourier transformation to the spectrum signal to obtain at least one Stokes polarization vector component for each pixel within the scene.
Abstract:
In a device for measuring the complete polarization state of light over a spectral bandwidth, an optical input signal (41) with wavelengths of light within a spectral band is incident on two or more diffraction gratings (42, 44, 46, 48), or incident from at least two directions on one or more diffraction gratings (72, 74), and the intensity is measured as a function of wavelength for at least four of the diffraction spectra produced by the grating(s). The polarization state of light is then calculated as a function of wavelength over the spectral bandwidth from the intensity measurements.