Abstract:
Heat dissipation of a target is enhanced in a transmissive X-ray generating apparatus where an anode member constitutes a part of a container. An anode member configured to hold a target is divided into an outer anode member, which is configured to hold the target and is connected to a container, and an inner anode member, which is joined to an insulating tube and is closer to an electron emitting portion than the outer anode member is. The outer circumferential surface of the inner anode member is joined to the outer anode member via a joining member. Heat generated by the electron emitting portion is dissipated mainly from the inner anode member via the insulating tube, or directly, to an insulating liquid.
Abstract:
An anode member includes a first metal tube and a second metal tube having a coefficient of thermal expansion that is larger than that of the first metal tube. A peripheral portion of a target is bonded to the anode member via a bonding material that is arranged so as to extend over the first metal tube and the second metal tube.
Abstract:
In an X-ray radiation source, a counter wall made of alkali-containing glass, out of walls of a housing of an X-ray tube, is sandwiched between a filament and an electric field control electrode to each of which a negative high voltage is applied. This configuration prevents an electric field from being generated in the counter wall and thus suppresses precipitation of alkali ions from the glass. Therefore, it prevents change in potential relationship between electrodes at different potentials such as the filament, grid, and target and enables stable operation to be maintained, without occurrence of a trouble of failure in maintaining a desired X-ray amount.
Abstract:
An x-ray interferometric imaging system in which the x-ray source comprises a target having a plurality of structured coherent sub-sources of x-rays embedded in a thermally conducting substrate. The system additionally comprises a beam-splitting grating G1 that establishes a Talbot interference pattern, which may be a π phase-shifting grating, and an x-ray detector to convert two-dimensional x-ray intensities into electronic signals. The system may also comprise a second analyzer grating G2 that may be placed in front of the detector to form additional interference fringes, a means to translate the second grating G2 relative to the detector. The system may additionally comprise an antiscattering grid to reduce signals from scattered x-rays. Various configurations of dark-field and bright-field detectors are also disclosed.
Abstract:
An electron beam device including an electron source which generates an electron beam; three lenses for controlling the characteristics of the electron beam, including a first lens, second lens and third lens arranged in sequence from the upstream side in relation to the emission direction of the electron beam; and a beam definition aperture arranged on the second lens. The position of the second lens is adjusted such that the total lens magnification ratio obtained under maximum beam current substantially matches the ideal lens magnification ratio defined on the basis of electro-optical characteristics.
Abstract:
A transmissive-type target includes a target layer, and a transmissive substrate configured to support the target layer. The transmissive substrate has a pair of surfaces facing each other and is formed of polycrystalline diamond. In the transmissive substrate, one of the pair of surfaces includes polycrystalline diamond having a first average crystal grain diameter which is smaller than a second average crystal grain diameter of polycrystalline diamond included on the other surface opposing thereto. The target layer is supported by any one of the pair of surfaces.
Abstract:
A radiation generating tube, which includes: a cathode connected to an electron gun structure; an anode including a target and configured to generate radiation; and a tubular side wall disposed between the cathode and the anode to surround the electron gun structure; and an electrical potential defining member disposed at an intermediate portion of the tubular side wall between the anode and the cathode. The electrical potential defining member is electrically connected to an electrical potential defining unit via an electrical resistance member or an inductor, and a potential of the electrical potential defining member is defined to be a higher potential than a potential of the cathode and to be a lower potential than a potential of the anode.
Abstract:
An x-ray source is described. During operation of the x-ray source, an electron source emits a beam of electrons. This beam of electrons is focused to a spot on a target by a magnetic focusing lens. In response to receiving the beam of focused electrons, the target provides a transmission source of x-rays. Moreover, a repositioning mechanism selectively repositions the beam of focused electrons to different locations on a surface of the target based on a feedback parameter associated with operation of the x-ray source. This feedback parameter may be based on: an intensity of the x-rays output by the x-ray source; a position of the x-rays output by the x-ray source; an elapsed time during operation of the x-ray source; a cross-sectional shape of the x-rays output by the x-ray source; and/or a spot size of the x-rays output by the x-ray source.
Abstract:
A x-ray apparatus of the present application comprises: a vacuum box which is sealed at its periphery, and the interior thereof is high vacuum; a plurality of electron transmitting units arranged in a linear array and installed on the wall at one end within the vacuum box, each electron transmitting unit is independent to each other; the electron transmitting unit having: a heating filament; a cathode connected to the heating filament; a grid arranged above the cathode opposing the cathode; anode made of metal and installed at the other end of the vacuum box, and in the direction of length, the anode is parallel to the plane of the grid of the electron transmitting unit, and in the direction of width, the anode has a predetermined angle with respect to the plane of the grid of the electron transmitting unit.
Abstract:
The present application provides a curved surface array distributed x-ray apparatus, characterized in that, it comprises: a vacuum box which is sealed at its periphery, and the interior thereof is high vacuum; a plurality of electron transmitting units arranged on the wall of the vacuum box in multiple rows along the direction of the axis of the curved surface in the curved surface facing the axis; an anode made of metal and arranged in the axis in the vacuum box which comprises an anode pipe and an anode target surface; a power supply and control system having a high voltage power supply connected to the anode, a filament power supply connected to each of the plurality of the electron transmitting units, a grid-controlled apparatus connected to each of the plurality of electron transmitting units, a control system for controlling each power supply.