Abstract:
Electronic devices are provided with ejectable component assemblies. Each ejectable component assembly may include a tray that can be loaded with one or more types of removable module, such as a mini-SIM card and a micro-SIM card, and inserted into the device. Each assembly may also include a cover coupled to a circuit board. The tray may be inserted through an opening in the electronic device and into a space between the cover and the circuit board. A portion of the space is contained within the pocket. A portion of the tray may be contained within the pocket when the tray is inserted into the device for holding the module at a functional insertion position within the device.
Abstract:
A package structure for connection with an output/input module is disclosed. The package structure can be applied to conventional multi-chip packages and system in packages. The package structure defines at least one insertion cavity that is vertically or horizontally disposed. By simply inserting an output/input module into the insertion cavity, an electrical connection can be established between the output/input module and the package structure. Accordingly, the package structure thus constructed can address the repairing, replacement and upgrading problems of electronic components encountered by a package structure that adopts the conventional soldering connection method.
Abstract:
A printed circuit board includes a first layer including a groove formed therein. The groove extends between opposing face surfaces. A second layer is coupled with one face surface of the first layer. The second layer includes a through hole in communication with the groove of the first layer. A third layer is coupled to other face surface of the first layer opposite the second layer. Portions of the second and third layers cooperate with the groove and forming a cavity with an opening at the edge of the board. The cavity is accessible through the through hole of the second layer. A printed circuit board includes multiple layers which are coupled together. A wire is electronically coupled to the printed circuit board by being inserted into the cavity with solder applied via the through hole. An alternative embodiment utilizes two layers to define the board and cavity.
Abstract:
An arrangement for connecting an electronic subassembly and an optical subassembly in an electro-optical communication device such as an electro-optical transceiver. The arrangement includes a body of a rigid dielectric material for mounting e.g. on the optical subassembly. The body has electrically conductive pathways provided thereon and includes a shaped portion providing a socket-like formation. At least one electrical contact element is coupled with e.g. the electronic subassembly. The electrical contact element is pluggable into the socket-like formation of the body of rigid dielectric material and includes an elastic device adapted to elastically co-operate with the socket-like formation of the body of rigid dielectric material to retain the electrical contact element plugged in the socket-like formation to provide electrical contact with the electrically conductive pathways provide thereon, while permitting vibrational displacement of the electrical contact element within the socket-like formation.
Abstract:
A substrate connecting member connects two circuit boards connected together while maintaining high reliability of the junctions between itself and the circuit boards even if the circuit boards are warped by temperature change of an impact load. The substrate connecting member includes a frame member made of an insulating resin; slit grooves formed in at least one of the inner and outer surfaces of frame side portions composing the frame member, the slit grooves being formed throughout the entire length of the frame side portions in the direction perpendicular to the thickness direction of the frame side portions; and connection conductor portions having connection terminals provided on the top and bottom surfaces, respectively, of the frame side portions in the thickness direction and connecting conductors each connecting connection terminals.
Abstract:
A package structure for connection with an output/input module is disclosed. The package structure can be applied to conventional multi-chip packages and system in packages. The package structure defines at least one insertion cavity that is vertically or horizontally disposed. By simply inserting an output/input module into the insertion cavity, an electrical connection can be established between the output/input module and the package structure. Accordingly, the package structure thus constructed can address the repairing, replacement and upgrading problems of electronic components encountered by a package structure that adopts the conventional soldering connection method.
Abstract:
The present invention relates to a connection structure for a printed wiring board to be electrically connected to a FPC. The FPC has an elongated substrate, and plural conductors are laminated on a surface of the substrate for extending along an axial direction of the substrate. The printed wiring board has an insertion opening provided at an edge surface for being inserted by a top end portion of the FPC, and plural line connecting terminals formed on an internal wall surface of the insertion opening. The top end portion of the FPC has a slider including plural elastic deformable first contacts, and a first housing for holding the plurality of contacts. The FPC is inserted into the insertion opening of the printed wiring board such that one end of the first contact presses the conductor and the other end of the first contact presses the line connecting terminal. The FPC can be connected to the printed wiring board on an edge surface thereof, allowing circuit elements to be mounted in high density, and improving freedom in designing wiring patterns.
Abstract:
A printed circuit board assembly has plural printed circuit boards that are mechanically and electrically connected to each other with them being stacked, and a connection layer that connects the adjacent two printed circuit boards to each other is provided. The connection layer includes an insulation portion and an electric conduction portion. The insulation portion contains an insulating member and is adhered to each of the adjacent two printed circuit boards. The electric conduction portion passes through the insulation portion and connects electrode terminals of the adjacent two printed circuit boards.
Abstract:
A printed circuit board (PCB) assembly includes a PCB and a first integrated conductive bus structure extending from a first edge of the PCB. The PCB connects a plurality of electronic components and includes a plurality of conductive layers, each separated by a non-conductive layer. The first integrated conductive bus structure includes a first portion that extends from the first edge of the PCB and which forms a plurality of electrically separate contacts of a connector. A second portion of the bus structure is integrated within the PCB and couples each of the contacts to at least one conductive trace of the PCB through plated holes.
Abstract:
A connection structure for a printed wiring board which enables high density integration is provided. A FCP 2 includes an exposed conductor part 2A including an insulating substrate 22 and a reinforcing plate 24 stacked with this substrate 22 via an elastic member 23. In the exposed conductor part 2A, conductors 21 each having a protrusion 20 formed on a surface is placed on the insulating substrate. The exposed conductor part 2A can be elastically deformed in the thickness direction in which the substrate 22, the reinforcing plate 24 and the like are stacked. A printed wiring board 1 is constructed by stacking an inner layer board 10 and a first outer layer board 11 and a second outer layer board 12 which sandwich this inner layer board 10. A notched groove 10A is formed on the inner layer board 10, and an insertion opening 10B is formed. Through-hole ports 11 which appear on the notched groove 10A side is placed on the first outer layer board. When the FPC 2 is inserted into the insertion opening 10B, the protrusion 20 of the FPC 2 fits with the through-hole port 11A from within insertion opening 10B and presses thereto.