Abstract:
Embedding a discrete electrical device in a printed circuit board (PCB) includes: providing a vertical via as a blind hole from a horizontal surface of the PCB to an electrically conductive structure in a first layer, the first layer being one layer of a first core section of a plurality of core sections vertically arranged above each other, each core section including lower and upper conductive layers, and a non-conductive layer in between; inserting the electrical device into the via, with the device extending within at least two of the core sections; establishing a first electrical connection between a first electrical device contact device and the electrically conductive structure in the first layer; and establishing a second electrical connection between a second electrical device contact and a second layer, the second layer being one of the electrically conductive layers of a second horizontal core section.
Abstract:
An interconnect structure that includes a component circuit board containing a plurality of electrical components, and a wafer connector assembly. The wafer connector assembly includes a plurality of interconnect circuit boards that are in electrical connection with the components circuit board through a plurality of rows of solder joints, the plurality of interconnect circuit boards having a connection end including at least one contact. An adhesive is present structurally reinforcing at least a row of the solder joints that is proximate to the connection end of the plurality of interconnect circuit boards of the wafer assembly.
Abstract:
A noise filter includes a magnetic core and a fixing member. The magnetic core includes a cylindrical integral body, and a wire is passed through the magnetic core. The fixing member is disposed inside the magnetic core and fixes the magnetic core to the wire.
Abstract:
A converter includes a plurality of active circuitry elements over a substrate. The converter further includes a passivation structure over the plurality of active circuitry elements, the passivation structure having at least one opening that is configured to expose at least one electrical pad of each active circuitry element. The converter further includes a plurality of passive electrical components over the passivation structure, wherein each passive electrical component is selectively connectable with at least one other passive electrical component, and a first side of each passive electrical component is electrically coupled to an electrical pad of each of at least two active circuitry elements. The converter further includes a plurality of electrical connection structures, wherein a first electrical connection structure electrically couples an electrical pad of a first active circuitry element to a corresponding passive electrical component, and the first electrical connection structure is completely within the passivation structure.
Abstract:
A hybrid additive manufacturing approach that incorporates three-dimensional (3D) printing and placement of modules selected from a library of modules to fabricate an electromechanical assembly. By virtue of fabrication of the electromechanical assembly, mechanical properties and electrical properties of the assembly are created. The invention overcomes the material and process limitations of current printable electronics approaches, enabling complete, complex electromechanical assemblies to be fabricated.
Abstract:
Representative implementations of devices and techniques provide improved thermal performance of a chip die disposed within a layered printed circuit board (PCB). Passive components may be strategically located on one or more surfaces of the PCB. The passive components may be arranged to conduct heat generated by the chip die away from the chip die.
Abstract:
One object is to compensate the reduction of the Q value due to reduction of core sectional area of a coil of an inductor, and the reduction of positional accuracy and adhesive strength of components mounted on a printed circuit board due to reduction of area of external electrodes, both caused by downsizing of component sizes. An inductor is provided which includes: a coil formed in an insulator and having one end and the other end thereof formed in a direction away from a mounting surface; and lead-out portions connected to the coil at positions more distant from the mounting surface than a portion of the coil closest to the mounting surface.
Abstract:
A coil component includes a mounting surface that is a side mounted on a mounting board and a detecting surface that is a side generating a magnetic field to detect a distance from a detected conductor. The coil component has a coil conductor formed into a spiral shape, and a magnetic resin disposed on the mounting surface side of the coil conductor without being disposed on the detecting surface side of the coil conductor.
Abstract:
A reed switch relay comprises a PCB base (1) and a control assembly (2) electrically connected to the PCB base. The control assembly is mounted on the PCB base by a surface mount technology. The control assembly comprises a hollow coil (21) mounted on the PCB base, a reed switch (22) mounted in the hollow coil, and a shield layer (23) sleeving the outer surface of the hollow coil, the reed switch comprises pins, the shield layer is connected with the pins of the reed switch. In the reed relay, the control assembly is mounted on the PCB base though a surface mount technology, which ensures position tolerance and precision of the reed switch, implements full mechanization of product production, increases productivity, and satisfies requirements of mass production, thereby increasing economic benefits.
Abstract:
In a method for manufacturing ceramic substrates and module components, an unfired mother ceramic substrate is cut at predetermined positions for division into separate unfired ceramic substrates. The cut unfired mother ceramic substrate is pressed such that pressure is applied parallel or substantially parallel to its main surfaces so that the cross-sectional end surfaces created in the cutting step are joined. The unfired mother ceramic substrate including end surface junctions, resulting from joining of the cross-sectional end surfaces, is fired. The fired mother ceramic substrate is broken along the end surface junctions to divide it into separate ceramic substrates.