Abstract:
Described are methods of making an electronic device including an electronic component, such as an IC chip, connected to conducting traces provided on a substrate by depositing an electrically conductive polymer deposited onto the substrate. The electronic component may be placed on the substrate before or after the electrically conductive polymer is deposited. Once deposited, the electrically conductive polymer is cured. The electrically conductive polymer may be deposited in a number of ways, such as using a mask having a desired pattern and applying the electrically conductive polymer to the mask, by screen printing the electrically conductive polymer or by printing the electrically conductive polymer using ink jet printing techniques.
Abstract:
To mount a TSOP on an interposer substrate, leads provided to the TSOP are joined to pads of the interposer substrate by a thermosetting conductive resin, and the TSOP exclusive of the leads is joined to ground layers formed in the interposer substrate by a thermosetting conductive resin. The interposer substrates with the TSOPs mounted thereon are stacked in eight layers in such a manner that the TSOPs face downward. Then, leads of the upper interposer substrate are joined to pads formed in the rear face of the lower interposer substrate by a thermosetting conductive resin, so that the interposer substrates adjacent in a vertical direction are connected.
Abstract:
A semiconductor die package is disclosed. It may include a semiconductor die having a first surface and a second surface, and a leadframe structure. A molding material may be formed around at least a portion of the die and at least a portion of the leadframe structure. A solderable layer may be on the exterior surface of the molding material and the first surface of the semiconductor die.
Abstract:
A lamp assembly and methods of assembling the lamp assembly are provided. The lamp assembly comprises a printed circuit board (PCB) having a face surface, a rear surface opposite the face surface, electrical traces on the rear surface, and an opening extending from the face surface to the rear surface, and a light emitting diode (LED) emitter having a dome portion, a body, and a plurality of electrical terminals connected to the body, wherein the body of the LED emitter is adjacent the rear surface, the dome portion of the LED emitter extends through the opening in the PCB to the face surface, and the electrical terminals are connected to the electrical traces on the rear surface.
Abstract:
Methods and apparatuses for an electronic assembly. The electronic assembly has a first object created and separated from a host substrate. The first object has a first electrical circuitry therein. A carrier substrate is coupled to the first object wherein the first object is being recessed below a surface of the carrier substrate. The carrier substrate further includes a first carrier connection pad and a second carrier connection pad that interconnect with the first object using metal connectors. A receiving substrate, which is substantially planar, including a second electrical circuitry, a first receiving connection pad, and a second receiving connection pad that interconnect with the second electrical circuitry using the metal connectors. The carrier substrate is coupled to the receiving substrate using the connection pads mentioned.
Abstract:
A hybrid integrated circuit device of the present invention includes: a circuit board having a front surface subjected to an insulation process; a conductive pattern formed on the front surface of the circuit board; a circuit element placed at a desired position on the conductive pattern and electrically connected to the conductive pattern; and a plurality of leads fixed to the conductive pattern and led to the outside. End portions of the leads which are led to the outside extend approximately parallel to the circuit board in a plane different from that of the front surface of the circuit board.
Abstract:
A semiconductor chip package may include functional and packaging parts, which may be separated into first and second areas respectively, and designated only for a specific type of semiconductor material. The first area may be designated only for functional material, while the second area may be designated only for packaging material. The first area may include a semiconductor chip and/or passive elements, while the second area may include packaging material for example, solder and/or contact pads.
Abstract:
The invention relates to a component arrangement in which an electric component (5) is lowered into an indentation (4) of a circuit board (1) and in which the electric component (5) is attached to an auxiliary circuit board (6), which is connected in turn to the circuit board (1). By lowering the electric component (5) in the indentation (4) of the circuit board (1), the component remainder (U) can be reduced advantageously.
Abstract:
A solder ball array type package structure is able to control collapse. The package includes a substrate, a carrier, a plurality of dies, a molding compound and a plurality of solder balls. The substrate has at least one active surface. Pads are located on the first surface of the substrate. The carrier has at least an active surface and a back surface opposite the active surface. A plurality of dies are located on the back surface and the active surface of the carrier. The dies arranged on the active surface are electrically connected to the carrier by flip chip technology. A molding compound encapsulates on the back surface of the carrier to cover the dies on the back surface of the carrier. Solder balls having a base material are provided on the active surface of the carrier in array. At least three solder balls coated with the base material having a high melting-temperature core are further provided in the periphery of the array. The carrier is arranged such that the active surface faces the first surface of the substrate to allow each solder ball correspond to the one of the pads, respectively.
Abstract:
The invention concerns a method for connecting first contact studs (16) of a structure (1) bearing electrodes (4) for measuring or for stimulating a physiological activity with second studs (17) of at least a downstream circuit (2), each second stud (17) being traversed by an opening (15) perforating the downstream circuit. The method comprises the following steps: a) placing the downstream circuit on said structure, so that the opening (15) of a second stud (17) is located opposite a first stud (16); and b) depositing in the opening (15) of the second stud (17) a conductive material (18) providing the connection between the first and the second stud opposite.