Abstract:
A method is provided for processing ions in a multipole ion trap, comprising generating RF radial confinement fields within a first and second multipole rod set positioned in tandem, a ratio of q value exhibited by the second rod set relative to the first rod set being greater than one for any m/z, said RF axial confinement fields within the first and second rod sets interacting in an interaction region between the first and second rod sets so as to produce a fringing field; transmitting ions through said first rod set towards said second rod set; and increasing the radial oscillation amplitude of at least a portion of the ions within said first rod set such that at least a portion of said ions having an increased radial oscillation amplitude are repulsed by said fringing field.
Abstract:
Systems and methods are used to rapidly screening samples. A fast sample introduction device that is non-chromatographic is instructed to supply each sample of a plurality samples to a tandem mass spectrometer using a processor. The fast sample introduction device can include a flow injection analysis device, an ion mobility analysis device, or a rapid sample cleanup device. The tandem mass spectrometer is instructed to perform fragmentation scans at two or more mass selection windows across a mass range of each sample of the plurality of samples using the processor. The two or more mass selection windows across the mass range can have fixed or variable window widths. The tandem mass spectrometer can be instructed to obtain a mass spectrum of the mass range before instructing the tandem mass spectrometer to perform the fragmentation scans.
Abstract:
Systems and methods are provided for analyzing a sample using overlapping measured mass selection window widths. A mass range of a sample is divided into two or more target mass selection window widths using a processor. The two or more target widths can have the same width or variable widths. A tandem mass spectrometer is instructed to perform two or more fragmentation scans across the mass range using the processor. Each fragmentation scan of the two or more fragmentation scans includes a measured mass selection window width. The two or more measured widths of the two or more fragmentation scans can have the same width or variable widths. At least two of the two or more measured mass selection window widths overlap. The overlap in measured mass selection window widths corresponds to at least one target mass selection window width.
Abstract:
Systems and methods are provided for reducing the time period of a CID event of an MS3 experiment and making the overall fragmentation event more generic. A CID event of an MS3 experiment performed on a sample by a mass spectrometer is divided into two time periods using a processor. At the beginning of a first time period of the CID event, the mass spectrometer is instructed to both open a pulse valve in order to pulse a collision gas and apply a first CID voltage. At the beginning of a second time period of the CID event, the mass spectrometer is instructed to both close the pulse valve and apply a second CID voltage. The mass spectrometer is pumped down during the second time period. The overlap in time of the pump down and CID reduces the overall time period of the CID event.
Abstract:
Quantification of vitamin D2, vitamin D3, and the monohydroxy and diihydroxy metabolites of vitamin D2 and vitamin D3, can comprise labeling analytes with mass spectrometry (MS) tagging reagents and performing LC-MSMS analysis of the labeled analytes. The labeled analytes can include a labeled standard and can have distinct retention times on a reversed phase column, as well as distinct masses. Under high energy collisions, reporter groups can be generated. The intensity or the peak area detected for each reporter group can be used for quantitation. In some embodiments, a one-step tagging reagent is used that is a dienophile-containing, labeled m Diels Alder reagent.
Abstract:
A method for analyzing a sample that contains a plurality of lipid isomers is described that involves forming one or more lipid metal ion adducts and transporting the one or more lipid metal ion adducts through a Mix of POPC+OPPC differential mobility spectrometer to cause separation of the one or more lipid metal ion adducts from each other. The lipid isomers can be chosen, for example, from fatty acids, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, polyketides, sterol lipids, and prenol lipids. Particular examples include phosphatidylcholine regioisomers such as 1-palmatoyl-2-oleoyl-sn-phosphatidylcholine (POPC) and 1-oleoyl-2-palmatoyl-sn-phosphatidylcholine and triacylglycerols containg palmetic and oleic acid groups. The metal chosen can include a cationization reagent that contains sodium, potassium, silver or lithium.
Abstract:
Methods and systems for performing ion mobility spectrometry are provided herein. In accordance with various aspects of the applicant's teachings, the methods and systems can provide for the separation of biologically relevant acids that may be difficult to separate with conventional MS techniques. In various aspects, methods and systems in accordance with applicant's teachings can enable a differential mobility spectrometer to resolve biologically relevant acids through the use of CO2 as the drift gas in combination with Acetone.
Abstract:
A precursor ion spectrum and one or more product ion spectra are received from a tandem mass spectrometer that analyzes a compound. For a selected precursor ion peak in the precursor ion spectrum, mass differences are calculated between other peaks and one or more limitations on the number of elements in the selected precursor ion are generated. For a precursor ion peak, a product ion spectrum is located from the one or more product ion spectra. For a selected product ion peak in the product ion spectrum, mass differences between other peaks are calculated and one or more limitations on the number of elements in the selected product ion are generated. Limitations on the number of elements from the precursor ion and the product ions are combined. One or more elemental compositions are generated from a mass of the selected precursor ion peak and the combined limitations.
Abstract:
Systems and methods are used to analyze a sample using variable mass selection window widths. A tandem mass spectrometer is instructed to perform at least two fragmentation scans of a sample with different mass selection window widths using a processor. The tandem mass spectrometer includes a mass analyzer that allows variable mass selection window widths. The selection of the different mass selection window widths can be based on one or more properties of sample compounds. The properties may include a sample compound molecular weight distribution that is calculated from a molecular weight distribution of expected compounds or is determined from a list of molecular weights for one or more known compounds. The tandem mass spectrometer can also be instructed to perform an analysis of the sample before instructing the tandem mass spectrometer to perform the at least two fragmentation scans of the sample.
Abstract:
An electrospray ion source method and system is provided for detecting emitter failure comprising a liquid chromatography column suitable for chromatographic separation of a sample. The column can have an inlet for receiving the sample; and an outlet for ejecting the sample. A make-up flow channel is provided for introducing make-up flow of liquid to the sample post-column, wherein the make-up flow normalizes the spray current. An electrospray ionization source is provided having one or more electrospray ionization emitter nozzles for receiving the make-up flow containing sample. A power supply can provide a voltage to the one or more emitter nozzles, and a measurement device can measure and monitor the spray current.