Abstract:
The present invention relates to devices and methods for exercising the lower limbs, in particular for exercising lower limbs. The devices are suitable for training the lower limbs of persons suffering from paraplegia or hemiplegia or musculoskeletal disorders in general. In some aspects, the present invention relates to powered articulated systems (ASs) and to the rehabilitation by aid of said ASs. The parallel or hybrid ASs of the invention are based on a parallel or hybrid, lambda-type framework and are controlled by a data processing unit. The ASs are preferably controlled by a closed-loop, real time control system.
Abstract:
A range of motion machine having two or four cranks driven directly by motors without exposed gears or chains. The speed and direction of crank rotation and the length of the crank arms may be varied with electronic controls. Crank arm length may be varied whether the crank is stationary or rotating. The cranks and motors are mounted at the top of pedestals which are adjustable in height.
Abstract:
This disclosure concerns a wireless communication system adapted to establish a feedback protocol between a handheld remote control and at least an adjustable bed controller, the handheld remote control having a memory position user interface adapted to initiate a transmission of a position recall command from the handheld remote control to an adjustable bed controller using the feedback protocol to adjust a position of a bed segment to a preset position from within a predetermined range of acceptable positions stored in memory. The adjustable bed controller is adapted to initiate a communication from the adjustable bed controller to the handheld remote to indicate that the adjustable bed controller has responded to the position recall command.
Abstract:
The appliance according to the invention serves for cardiopulmonary massage and/or resuscitation of a patient and is provided with a massage device (17) which can be driven reversibly by a drive device (18) in an actuation direction (23) and which has a pressure area (20) that can be positioned on the chest (12) of a patient (11) at a target contact area (21). In order to ensure that deviations of the pressure area of the massage device from a target pressure point can be determined promptly and reliably, the invention proposes a position sensor device (22), for determining changes in the position of the massage device (17) and/or of the pressure area (20) thereof relative to the target contact area (21) on the chest (12) of the patient in a plane normal to the actuation direction (23) of the massage device (17).
Abstract:
A system and method for use during the administration of CPR chest compressions and defibrillating shock on a cardiac arrest victim. The system analyzes compression waveforms from a compression depth monitor to determine the source of chest compressions, and enables the delivery of defibrillating shock during a compression cycle if the compression waveforms are characteristic of an automated CPR chest compression device.
Abstract:
A treadmill for providing walking rehabilitation to a rehabilitee is provided. The treadmill includes a base including a belt, a motor interconnected with the belt, and a walking rehabilitation device interconnected with the base. The motor causes the belt to rotate in a first direction. The walking rehabilitation device includes a user engagement structure configured to be removably secured to one or more locations of a rehabilitee's extremities. The walking rehabilitation device further includes a transmission interconnecting the motor and the user engagement structure, the transmission transferring motion from the motor to the rehabilitee via the user engagement structure, allowing the rehabilitee to walk along the belt.
Abstract:
A manually propelled vehicle having an assist function that assists walking of a user includes a vehicle body, a wheel for moving the vehicle body, sensor that detects an operating force, power driver that supplies power to the wheel based on the operating force, a motion sensor that detects a movement of the vehicle body according to the operating force detected by the sensor; and controller that controls the power driver, wherein, when the user operates the manually propelled vehicle while the assist function is deactivated, the controller activates the assist function based on the movement of the vehicle body detected by the motion sensor.
Abstract:
Systems, methods, and devices used to treat eyelids, meibomian glands, ducts, and surrounding tissue are described herein. In some embodiments, an eye treatment device is disclosed, which includes a scleral shield positionable proximate an inner surface of an eyelid, the scleral shield being made of, or coated with, an energy-absorbing material activated by a light energy, and an energy transducer positionable outside of the eyelid, the energy transducer configured to provide light energy at one or more wavelengths, including a first wavelength selected to heat the energy-absorbing material.
Abstract:
Optical alignment for piston driven chest compression devices optimizes the application of chest compressions to a fixed location on a subject's chest and provides information regarding the depth and frequency of chest compressions. The targeting system records and may display some telemetry corresponding to any movement or “walking” away from the selected compression site as well as the depth and frequency of compressions. The targeting system is interconnected to the compression device controller and the targeting system provides warnings to operators if the compression components contact the subject outside a preset warning limit away from the selected compression site. The targeting system may also halt the compression device if the site of contact between the compression components and the subject is located outside a preset absolute limit.
Abstract:
The present technology is the use of the combination to treat a patient and the treatment of a patient. Sine waves are generated digitally by the combination. Data validation is used to ensure correct directional alignment prior to device activation. Patient safety and consistency in treatment protocols are considered in the spinal and upper cervical impulse treatment design. A patient is treated with smooth sinusoidal waveform with a force of about 8 N to about 12.2 N with a Z-axis of acceleration (shear acceleration) of about 0.5 g to about 5g at about 5 Hertz (Hz) to about 200 Hertz. Treatment conditions can be varied depending upon the size of the patient, which includes human and veterinary patients. The method is non-invasive.