Abstract:
An imaging device includes: a pixel array section functioning as a light receiving section which includes photoelectric conversion devices and in which a plurality of pixels, which output electric signals when photons are incident, are disposed in an array; a sensing circuit section in which a plurality of sensing circuits, which receive the electric signals from the pixels and perform binary determination regarding whether or not there is an incidence of photons on the pixels in a predetermined period, are arrayed; and a determination result integration circuit section having a function of integrating a plurality of determination results of the sensing circuits for the respective pixels or for each pixel group, wherein the determination result integration circuit section derives the amount of photon incidence on the light receiving section by performing photon counting for integrating the plurality of determination results in the plurality of pixels.
Abstract:
An optical sensor circuit has a first optical sensor that outputs a signal according to the amount of received light on an opened light-receiving surface, a second optical sensor that is provided near the first optical sensor and outputs a signal according to the amount of received light on a shielded light-receiving surface, and a difference calculating circuit that calculates a difference between the output signal of the first optical sensor and the output signal of the second optical sensor and outputs the difference.
Abstract:
A method is used to perform dark current compensation in a sensor (e.g., a CCD or CMOS sensor). A first and second array of devices (e.g., pixels) in the sensor are used to determine a first dark current value. The first array of pixels in the sensor receives impinging light and generates optical energy values therefrom. The second array of pixels in the sensor are used to determine a second dark current value at substantially a same time as the generating of the optical energy values. The second array of devices being non-sensitive to the impinging light. The first and second dark current values are used to compensate the optical energy values.
Abstract:
The present invention is directed to a method for improving measurement accuracy of infrared imaging radiometers utilizing a small infrared detector array, for example 160×120 pixels. The detector offset is changed so that the detector output, when observing a particular object, is constant over a range of ambient temperatures resulting in a constant dynamic range. A radiometric deconvolution is used in order to correct for measurement inaccuracies due to an object's small size.
Abstract:
A reflectometer for measuring absorption of light in selected regions of the light spectrum by a diffuse reflector. The reflectometer is adapted to precisely measure absorption resulting from the constituents present in body fluids. The sample to be measured is illuminated by a focussed light source at an angle of 45.degree. to its surface. The light diffusely reflected about the normal to the sample falls on a small round bundle of optical fibers. At the opposite end of the bundle, the fibers are arranged into a narrow rectangle. This rectangle forms the entrance slit for a concave holographic diffraction grating. The grating forms images of this entrance slit spectrally separated over a flat field suitable for recording the spectrum on film or on an array of discrete detectors.
Abstract:
A toner depositing amount measuring apparatus for measuring the amount of toner deposited on a photosensitive drum includes a light source for irradiating the surface of the photosensitive drum with light and a photoelectric converting section for receiving the reflected light and converting the received reflected light into an electric signal. A logarithmic calculation is applied to the output signal of the photoelectric converting section in a logarithm-compressing section. The temperature characteristics of the logarithm-compressing section are compensated for in a temperature compensating section. The amount of the toner deposition is calculated in a toner depositing amount calculating section based on a difference between the data during non-deposition of the toner and the data during deposition of the toner, the data being obtained from the logarithm-compressing section. Further, image forming conditions are changed in a control section in accordance with an output signal denoting the calculated deposition amount of the toner so as to control the density of the image formed.
Abstract:
A reflectometer for measuring absorption of light in selected regions of the light spectrum by a diffuse reflector. The reflectometer is adapted to precisely measure absorption resulting from the constituents present in body fluids. The sample to be measured is illuminated by a focused light source at an angle of 45.degree. to its surface. The light diffusely reflected about the normal to the sample falls on a small round bundle of optical fibers at the opposite end of the bundle, the fibers are arranged into a narrow rectangle. This rectangle forms the entrance slit for a concave holographic diffraction grating. The grating forms images of this entrance slit spectrally separated over a flat field suitable for recording the spectrum on film or on an array of discrete detectors.
Abstract:
A respiratory CO.sub.2 detector (10) comprising an infrared lamp source (44) and an infrared detector (50) responsive thereto forming an optical path for detecting the change in CO.sub.2 concentration, or an obstruction in a cuvette (42). The output of the infrared detector (50) provides a high and low voltage signal to be applied to a feedback control loop (12) and to an output circuit (14).The feedback control loop (12) includes a peak detector (22), a contamination detector (24), a pulse-width modulator (26) and a low pass filter (28), the latter providing a DC bias on the infrared lamp (44). The peak detector (22) is connected to the pulse-width modulator (26) to maintain the lamp voltage constant and is connected to comparators (56,62) to compare both outputs of the peak and contamination detectors (22,24). The contamination detector (24) will respond to blockage in the cuvette (42).The output control circuit (14) includes a sample-and-hold circuit (30) and a subtractor (32) connected to the output of said infrared detector to receive the high and low voltage signal from the infrared detector, the outputs of which produce an output signal without the DC bias which is then inverted to provide a high quality waveform.
Abstract:
A photo-electric converter according to the present invention has a switching element connected between a photosensitive element and a photo-electric converting circuit and another switching element connected in parallel with the photosensitive element, and an output from the photo-electric converting circuit obtained by turning on and off the switching element is analogue-to-digital converted and arithmetically processed. Thereby an offset voltage in the photo-electric converter circuit can be corrected and an accurate output can be obtained by the photo-electric conversion.
Abstract:
The color sensor system has at least three electronic light transmitters each emitting light of a determined narrow-band range of wavelengths, which under the control of a transmission control device in the course of a control cycle, illuminate successively the colored surface of the object in question for a brief period of time with light pulses of a predetermined intensity. The light reflected in each case from the colored surface upon the arrival of the light pulses is received by an electronic light receiver and converted into electrical signals. The electrical signals that are emitted successively by the light receiver in the course of a control cycle are conducted to an evaluation device for a color determination.