Abstract:
The invention relates to a multivariate calibration which can be used when the optical system used for that method does not comprise a multi-channel detector such as a CCD sensor or a line array of photodiodes. An optical system without a multi-channel detector doesn't allow to carry out preprocessing steps. Thus there is the need to carry out these preprocessing steps in another way. It is suggested to partially replace the preprocessing step by a measurement of the optical signal, whereby the measurement comprises transmitting or reflecting the optical signal by an optical element, thereby weighing the optical signal by a spectral weighing function. The advantage of the invention is to teach how such an optical system without a bulky and expensive CCD sensor can be used to carry out a multivariate calibration and preprocessing steps.
Abstract:
An apparatus for imaging a tooth having a light source with a first spectral range and a second spectral range. A polarizing beamsplitter (18) light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor (68), wherein the first and second polarization states are orthogonal. A first lens (22) in the return path directs image-bearing light from the tooth, through the polarizing beamsplitter (18), toward the sensor (68), and obtains image data from the redirected portion of the light having the second polarization state. A long-pass filter (15) in the return path attenuates light in the second spectral range. Control logic enables the sensor to obtain either the reflectance image or the fluorescence image.
Abstract:
A tilt structure includes a shaft section formed on a substrate section, a tilt structure film having one end formed on an upper surface of the shaft section, and the other end bonded to the substrate section, and a thin film section provided to the tilt structure film, located on a corner section composed of the upper surface of the shaft section and a side surface of the shaft section, and having a film thickness thinner than the tilt structure film, the tilt structure film is bent in the thin film section, and an acute angle is formed by the substrate section and the tilt structure film.
Abstract:
An ellipsometer or polarimeter system and method for controlling intensity of an electromagnetic beam over a spectrum of wavelengths by applying control (P2) and beam (P) polarizers, optionally in combination with an intervening and control compensator (C).
Abstract:
An apparatus for imaging a tooth having a light source with a first spectral range and a second spectral range. A polarizing beamsplitter (18) light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor (68), wherein the first and second polarization states are orthogonal. A first lens (22) in the return path directs image-bearing light from the tooth, through the polarizing beamsplitter (18), toward the sensor (68), and obtains image data from the redirected portion of the light having the second polarization state. A long-pass filter (15) in the return path attenuates light in the second spectral range. Control logic enables the sensor to obtain either the reflectance image or the fluorescence image.
Abstract:
An apparatus for imaging a tooth having a light source with a first spectral range and a second spectral range. A polarizing beamsplitter (18) light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor (68), wherein the first and second polarization states are orthogonal. A first lens (22) in the return path directs image-bearing light from the tooth, through the polarizing beamsplitter (18), toward the sensor (68), and obtains image data from the redirected portion of the light having the second polarization state. A long-pass filter (15) in the return path attenuates light in the second spectral range. Control logic enables the sensor to obtain either the reflectance image or the fluorescence image.
Abstract:
Systems and techniques for imaging spectroscopy using improved data acquisition for infrared and near-infrared imaging. A first filter corresponding to a first wavelength may be positioned in the optical path of an infrared camera, and subframe data may be acquired for different exposures. A second filter corresponding to a second different wavelength may be positioned in the optical path of the infrared camera, and subframe data acquired for different exposures. Image data for the first wavelength and the second wavelength may then be compared to reference spectroscopic data.
Abstract:
A rotating compensator spectroscopic ellipsometer or polarimeter system having a source of a polychromatic beam of electromagnetic radiation, a polarizer, a stage for supporting a material system, an analyzer, a dispersive optics and a detector system which comprises a multiplicity of detector elements, the system being functionally present in an environmental control chamber and therefore suitable for application in wide spectral range, (for example, 130-1700 nm). Preferred compensator design involves a substantially achromatic multiple element compensator systems wherein multiple total internal reflections enter retardance into an entered beam of electromagnetic radiation, and the elements thereof are oriented to minimize changes in the net retardance vs. the input beam angle resulting from changes in the position and/or rotation of the system of elements.
Abstract:
The present invention relates to a method and system of array imaging that extends or maximizes the longevity of the sensor array by minimizing the effects of photobleaching. The imaging system has a light source, a variable exposure aperture, and a variable filter system. The system extends the longevity of sensors by (1) using the variable exposure aperture to selectively expose sections of the sensor array containing representative numbers of each type of sensor, and/or (2) using the variable filter system to control the intensity of the excitation light, providing only the intensity required to induce the appropriate excitation and increasing that intensity over time as necessary to counteract the effects of photobleaching.
Abstract:
An optical microscope according to a first embodiment of the present invention includes: a laser light source; a Y-directional scanning unit moving the light beam in a Y direction; an objective lens; a X-directional scanning unit moving the light beam in a X direction; a beam splitter provided in an optical path from the Y-directional scanning unit to the sample, and separating outgoing light out of the light beam incident on the sample, which exits from the sample toward the objective lens from the light beam incident on the sample from the laser light source; a spectroscope having an entrance slit extending along the Y direction and spatially dispersing the outgoing light passed through the entrance slit in accordance with a wavelength of the light; and a detector detecting the outgoing light dispersed by the spectroscope.