Abstract:
The invention relates to a miniaturized spectrometer for investigating the spectrum of emission radiation excited in an object by incident radiation. For the miniaturized spectrometer according to the invention, a diode laser is preferably used as an edge emitter (without a perforated shutter). The window of the edge emitter is arranged at the focal point of the converging lens at the input of the illuminating beam path (without an optical fiber), preferably without a perforated shutter. The edge emitter produces a divergent beam pencil with an elliptical cross-section. The length ratio of the main axes of the ellipse is more than 2:1. The large main axis of the ellipse runs parallel to the longitudinal axis of the entry slit of the microspectrometer.
Abstract:
A Mach-Zehnder MEMS interferometer is achieved using two half plane beam splitters formed at respective edges of a first medium. The first beam splitter is optically coupled to receive an incident beam and operates to split the incident beam into two beams, a first one propagating in the first medium towards the second beam splitter and a second one propagating in a second medium. A moveable mirror in the second medium reflects the second beam back towards the second beam splitter to cause interference of the two beams.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
Based on the present invention, superior compact spectrometers may be constructed and integrated into a cellular phone, or attached to a cellular phone. Such a cellular phone may be a PDA phone, which supplies electrical power to the said spectrometer, provided with data storage, signal processing capability, and real-time display. As a combined standalone system, it allows spectroscopic measurements to be fulfilled in real-time applications in field, and results can be sent out in wireless communication to a remote station or to another cellular phone user in order to share the measurement results right away. When the system is used with a laser to function as a Raman spectrometer system, it can fulfill many daily routine tasks encountered by ordinary civilians, for example, the blood glucose monitoring for diabetes patients at home in a non-invasive manner.
Abstract:
A spectroscopic module 1 is provided with a spectroscopic unit 8 and a photodetector 9 in addition to a spectroscopic unit 7 and a photodetector 4 and thus can enhance its detection sensitivity for light in a wide wavelength range or different wavelength regions of light. A light-transmitting hole 4b is disposed between light detecting portions 4a, 9a, while a reflection unit 6 is provided so as to oppose a region R in a light-absorbing substrate 2, whereby the size can be kept from becoming larger. Ambient light La is absorbed by the region R in the substrate 2. Any part of the light La transmitted through the region R in the substrate 2 is reflected to the region R by the unit 6 formed so as to oppose the region R, whereby stray light can be inhibited from being caused by the incidence of the light La.
Abstract:
A miniaturized spectrometer/spectrophotometer system and methods are disclosed. A probe tip including one or more light sources and a plurality of light receivers is provided. A first spectrometer system receives light from a first set of the plurality of light receivers. A second spectrometer system receives light from a second set of the plurality of light receivers. A processor, wherein the processor receives data generated by the first spectrometer system and the second spectrometer system, wherein an optical measurement of a sample under test is produced based on the data generated by the first and second spectrometer systems.
Abstract:
A handheld or portable detection system with a high degree of specificity and accuracy, capable of use at small and substantial standoff distances (e.g., greater than 12 inches) is utilized to identify specific substances and mixtures thereof in order to provide information to officials for identification purposes and assists in determinations related to the legality, hazardous nature and/or disposition decision of such substance(s). The system uses a synchronous detector and visible light filter to enhance detection capabilities.
Abstract:
A spectral analysis apparatus includes a light transmissive envelope, first and second electrodes, a sleeve, and first and second electrical contacts. The light transmissive envelope contains a fluid operable to emit light when electrically energized. The first electrode is disposed upon an external surface of an end portion of the envelope external to the envelope. The second electrode is disposed upon an external surface of a second end portion external to the envelope. The sleeve defines a cavity configured to removably receive the envelope. The electrical contacts are in communication with the cavity and are configured to electrically connect to the corresponding electrode when the envelope is within the sleeve. The electrical contacts are connectable to an electrical power supply and electrically energize the fluid when connected to the electrical power supply.
Abstract:
An angle limiting filter includes: a first light-shielding layer containing a first light-shielding material and provided with a first opening; a second light-shielding layer containing a second light-shielding material and located in a region which surrounds at least one portion of the first light-shielding layer; a third light-shielding layer containing the first light-shielding material, provided with a second opening at least one portion of which overlaps the first opening, and located above the first light-shielding layer; and a fourth light-shielding layer containing the second light-shielding material and located above the second light-shielding layer in a region which surrounds at least one portion of the third light-shielding layer.
Abstract:
A mobile terminal and a method of performing functions using the mobile terminal are provided. The mobile terminal performs various functions using color information acquired through a color sensor, and the method performs functions using the mobile terminal.