Abstract:
A quantum yield calculation method uses a quantum yield calculation program for a spectrophotofluorometer. When a quantum yield is calculated using a spectrophotofluorometer 1, a calibration processing unit executes the processing to calibrate a photon number A2 that is a photon number of the fluorescence in a blank measurement state based on a photon number A1 that is the photon number of an excitation light in the blank measurement state and a photon number B1 that is the photon number of an excitation light in the sample measurement state. A quantum yield calculation processing unit calculates a first quantum yield based on a background photon number A2′ after a calibration in addition to the photon number A1 of the excitation light in the blank measurement state and the photon number B2 of the fluorescence in the sample measurement state.
Abstract:
A spectroscopic measurement apparatus includes a light source, an integrator, a spectroscopic detector, and an analysis unit. The integrator includes an internal space in which a measurement object is disposed, a light input portion for inputting light to the internal space, a light output portion for outputting light from the internal space, a sample attachment portion for attaching the measurement object, and a filter attachment portion for attaching a filter unit. The filter unit has a transmission spectrum in which an attenuation rate for excitation light is larger than an attenuation rate for up-conversion light, and attenuates the light output from the light output portion. The analysis unit analyzes luminous efficiency of the measurement object on the basis of the transmission spectrum data and the spectroscopic spectrum data acquired by the spectroscopic detector.
Abstract:
Embodiments of the invention comprise apparatus and methods for detecting the presence of a substance in a test material using a plurality of wavelength-specific couplers (e.g. tilted fiber gratings) which provide a spatially distributed multi-node all-optical measurement system. Each node of the measurement system can comprise an optical module that is sensitive to the intensity of a limited band of wavelengths. The node is thus capable of detecting the presence of an absorption peak in a spectrum without having to obtain the full spectrum. By providing a plurality of optical modules that are sensitive to different wavelengths, the spectral signature of different substances may be monitored without having to measure full spectra. The measurement system may be particularly useful in a process control environment where it is desirable to take measurements of one or more substances in different locations.
Abstract:
A spectrometer equipped with an integrating sphere is used to measure a reflection spectrum from a suspension in a container when the suspension is irradiated with measurement light, of which wavelengths are selected from a wavelength range including near infrared. Reflection spectra of a number of types of standard samples, of which concentrations in the suspension are already known, are used to prepare a measurement model in accordance with an assay technique on the basis of a recursion. A concentration of the material in the suspension is found using the measurement model.
Abstract:
A device including an optical measuring device and an optical system which can measure the light intensity of the scattered light from the sample and the spatial distribution of the scattered light and which is excellent in the sensitivity is provided. In the device, the image distortion is suppressed by providing such a structure that the light emitted from the first substance is reflected by the ellipsoidal mirror two or more even times before reaching the second substance. The image distortion is suppressed by arranging two ellipsoidal mirrors so that respective one focuses are set to a common focus while remaining other two focuses are arranged on one line so as to be opposite to each other across the common focus, setting the common focus to a blank, arranging a first substance on one of the focuses, and arranging a second substance on the other of the focuses.
Abstract:
Examples embodiments of a removable optical assembly are disclosed. A removable optical assembly can be removably attached to a probe of an optical analytical instrument. The removable optical assembly can comprise a spherical optical element. An embodiment of the removable optical assembly can allow contact interrogation of a sample. In some embodiments, the removable optical assembly can comprise an internal optical element. In other embodiments, the removable optical assembly can comprise an external optical element. Manufacture of the removable optical assembly can comprise a monolithic embodiment or an assembled embodiment comprising a plurality of subassemblies. Embodiments of the removable optical assembly can be conical, cylindrical or planar is shape. The removable optical assembly can, in some embodiments, be consumable and/or disposable.
Abstract:
The present disclosure relates to a detecting device and a detecting method of a transparent display panel. The method comprises: providing a reference pattern sheet having n pairs of first regions with a first color and second regions with a second color alternately arranged in a first direction, and each of the first regions and each of the second regions having a same predetermined width D in the first direction; forming a uniform predetermined illuminance on the reference pattern sheet; detecting directly the reference pattern sheet by a measuring device; detecting the reference pattern sheet through the transparent panel display by the measuring device; and thereby determining a clarity of the transparent display panel.
Abstract:
The invention relates to a device (10; 210; 310; 410; 510) for tomographic image recording. The device comprises a sample retainer (14), a light source (12), and a detector unit (16). The light source (12) is designed to produce a pencil beam (38), which has a beam direction (40) and which passes through a sample volume of the sample retainer (14) provided in order to accommodate a sample, and has an optical control element (30), which is able to move the pencil beam (38) passing through the sample retainer (14) transversely to the beam direction (40) while the beam direction (40) remains substantially unchanged. The detector unit (16) is designed to detect at least a portion of scattered radiation (64; 64′) escaping from a section of the pencil beam (38) within the sample volume or the sample retainer (14) in a non-spatially-resolved manner.
Abstract:
The photo-coupled data acquisition system can have a container having a contour wall extending upwardly from a closed bottom, for containing a sample therein, a light emitter operable to emit diffused light into the container at an initial intensity, a photodetector operable to detect a reflected intensity of the diffused light, and a structure connected to the contour wall and holding the light emitter and the photodetector at a predetermined height above the bottom of the container and in an orientation facing inside the container, wherein during operation of the system, the initial light intensity is attenuated by the sample and the reflected intensity thereof can be correlated to an information value concerning a variable of interest of the sample.
Abstract:
An integrating optical system having a chamber, the chamber having an aperture and at least one portion having a diffuse reflective material; a light source; and a diffuse transmissive baffle. The baffle is located in relation to the chamber such that it is also located in an optical path between the light source and a treatable target. A light-ray originating from the light source is diffusely transmitted from the diffuse transmissive baffle and impinges on an interior surface of the chamber before impinging on the treatable target.