Abstract:
This invention provides a multilayer substrate suited for hybrid ICs.The multilayer substrate is formed from a plurality of layered insulating layers, at least one of which is provided with an inner-layer wiring space extending in the planer direction of the insulating layers and filled with a conductive wiring material. The inner-layer wiring space, which can be in the form of a strip, is connected via through holes to flip chip ICs, resistors, etc., so as to form a circuit.The inner-layer wiring composed of a wiring space extending in the planer direction and filled with a conductive wiring material has a larger cross-sectional area for the passage of electric current and is lower in electrical resistivity, in comparison with conventional wiring formed by printing.
Abstract:
This invention provides a method of forming a circuit wiring pattern which cannot be formed by a prior art method such as etching or plating. This method comprises a step of forming trenches for forming a circuit wiring pattern at predetermined positions on at least one of the surface of an insulating base material and then filling a conductive material into the trenches, a step of removing conductor layers in such a manner that the conductor layers formed by the step described above exist only in the trenches formed in the insulating base material and gap portions of the circuit wiring pattern comprising the conductor layers formed in the trenches of the insulating base material are exposed, and a step of forming an insulating surface protection layer.
Abstract:
A method of patterning metal on a substrate without photolithography. The steps include providing a dielectric substrate, forming a metal mask in a predetermined pattern on the substrate without using a mask by direct-write deposition using a particle beam such as a liquid metal cluster force to form the mask, dry etching the substrate to form a plurality of channels therein, depositing a conductive metal into the channels, and removing the mask. The top of the substrate can then be planarized by polishing, or alternatively the dielectric between the metal lines can be etched. The invention is well suited for fabricating copper/polyimide substrates.
Abstract:
A punch has a planar surface and raised portions extending from the planar surface. First ones of the raised portions may have a height of approximately 3-25 mils. Second ones of the raised portions may have a greater depth than the first raised portions. The punch may be heated and/applied to the planar surface of a substrate which may also be pre-heated and which has properties of becoming deformed when subjected to heat and pressure. The punch produces cavities and grooves in the substrate at the positions of the raised portions. Electrical components may be disposed in the cavities in the substrate and an electrically conductive material may be disposed in the grooves to communicate with the electrical components. The raised portions in the punch may be provided by printed circuit techniques or by matching or by laser techniques. Alternatively, a foil may be disposed on the planar surface of the punch and the raised portions of the punch. When the punch is applied to the substrate, the grooves and cavities are formed and the foil is transferred to the substrate on the planar surface and in the grooves and cavities in the substrate. The portions of the foil on the planar surface of the substrate may then be removed as by printed circuit techniques or machining or laser techniques so that only the portions of the foil in the grooves and the cavities remain. If desired, these portions of the foil may be electrically plated.
Abstract:
A method of providing an electrical circuit wherein a carrier, which is a film of insulating plastic material with a circuit pattern thereon is supported in a mould and a moulding material is applied by the application of heat and pressure to provide a substrate so that the circuit is embedded in or within a three-dimensional surface of the moulded substrate.
Abstract:
A process for producing circuit boards involves the coating of a temporary substrate with a fluid mixture of an epoxy polymer component and a rubber polymer which is interactive therewith at temperatures of at least 180.degree. F. Preferably the rubber is a low molecular weight polyfunctional reactive butadiene/acrylonitrile interpolymer which is terminated by vinyl or carboxyl functional groups. The rubber component comprises at least 70 percent by weight of the epoxy polymer component, and the coating has a thickness of 0.001-0.015 inch. The coating is air dried upon the temporary substrate, and then the coating is transferred to the resinous substrate of the circuit board by heat and pressure. The coating is partially cured to effect partial polymerization of the epoxy prepolymer, further polymerization of the rubber, if it is of low molecular weight, and interaction of the rubber and epoxy polymer to form a matrix of the interacted rubber/epoxy. The exposed surface of this coating is then etched, and metal is deposited on the surface to form a conductive layer. A conductive pattern is formed therein, and heat and pressure is applied to at least the conductive layer and coating to fully cure the coating and bond the coating to the conductive layer, and thus the conductive pattern to the resinous substrate. The metal layer may be deposited chemically or by vacuum metallizing and like techniques.
Abstract:
The present invention contemplates fabrication of a printed circuit board blank having a predetermined pattern of pads and interconnecting conductive pathways, preferably (but not necessarily) flush with the face of the insulating substrate. To fabricate a finished circuit board of any desired circuit configuration, the printed circuit board blank is coated with a photoresist and exposed so that upon development of the photoresist and etching in accordance with the developed pattern, the interconnecting conductive pathways between pads will be selectively etched away so that only those interconnects for the desired circuit pattern remain. While contact printing or image exposure systems may be used to expose the photoresist, computer controlled raster scan laser printers offer the combination of speed and versatility, as the predetermined starting matrix of the invention is highly conductive to computer aided design, and the percentage of circuit board area required for exposure is very small compared to normal copper-clad board fabrication techniques. For multilayer printed circuit boards, registration apertures are provided in each board layer for alignment purposes. Interconnects between boards are made by drilling through selective pads and plating the through holes to interconnect the various board layers. Isolation of any layer of any plated through hole may be obtained by either isolation of the pad (removal of all pad interconnects) at the through hole, or alternatively by etching a larger diameter in the pad which region will be filled with laminating adhesive during the lamination process to insulate the pad from the through hole copper plating.
Abstract:
An improved circuit board having electrically conductive traces connected to respective terminals of a number of electrically current components mounted on a substrate. The substrate has cavities for mounting the components, and a plurality of grooves extend into one or both of a pair of opposed surfaces of the substrate. The grooves are filled by plating with an electrically conductive material to form the traces. Thus, the traces not only extend in the plane of a surface of the substrate but also extend perpendicular to such plane and into the substrate itself whereby a high packing density of traces can be achieved while maintaining essentially electrical paths between the components. The depth of each trace is a number of times greater than the width of the trace, a typical ratio being 10:1. The substrate can be molded from a plateable plastic or ceramic material and the grooves can be machined by a laser beam. The components are assembled before the grooves are plated to minimize production costs and to assure immediate electrical connection between the tracers and the terminals of respective components.
Abstract:
A plastic substrate is injection molded to provide a pattern of channels in at least one of its sides to define a predetermined set of conductive paths. Both the surfaces of the channels and the non-channel surfaces therebetween are metalling through one or more steps of flame spraying, a combination of electroless plating and electroplating, gas plating or vacuum deposition. In one form of the invention the metallization over the non-channel surfaces is removed by abrading. In another form of the invention the initial metallization over the non-channel surfaces is coated with a resist prior to the deposition of another metal layer. The metal covering the channels is subsequently removed by stripping the resist and etching away the initial metallization.
Abstract:
The present invention contemplates fabrication of a printed circuit board blank having a predetermined pattern of pads and interconnecting conductive pathways, preferably (but not necessarily) flush with the face of the insulating substrate. To fabricate a finished circuit board of any desired circuit configuration, the printed circuit board blank is coated with a photoresist and exposed so that upon development of the photoresist and etching in accordance with the developed pattern, the interconnecting conductive pathways between pads will be selectively etched away so that only those interconnects for the desired circuit pattern remain. While contact printing or image exposure systems may be used to expose the photoresist, computer controlled raster scan laser printers offer the combination of speed and versatility, as the predetermined starting matrix of the invention is highly conducive to computer aided design, and the percentage of circuit board area required for exposure is very small compared to normal copper-clad board fabrication techniques. For multilayer printed circuit boards, registration apertures are provided in each board layer for alignment purposes. Interconnects between boards are made by drilling through selective pads and plating the through holes to interconnect the various board layers. Isolation of any layer of any plated through hole may be obtained by either isolation of the pad (removal of all pad interconnects) at the through hole, or alternatively by etching a larger diameter in the pad which region will be filled with laminating adhesive during the lamination process to insulate the pad from the through hole copper plating.