Abstract:
A printed wiring board having an insulating base material; a wiring formed on at least one surface of the insulating base material, the wiring forming a predetermined circuit pattern; a first connection terminal portion formed on the surface and electrically connected to the wiring, the first connection terminal portion having a first width; a second connection terminal portion formed on the surface and electrically connected to the wiring, the second connection terminal portion having a second width; and a cover layer configured to cover the wiring and expose the first and the second connection terminal portion.
Abstract:
A flexible printed circuit includes: a first wiring layer and a second wiring layer being in contact with one surface of a flexible substrate, a third wiring layer and a fourth wiring layer on the other surface of the flexible substrate, a first conductive member being formed on surfaces in proximity to a through hole of the second wiring layer and the fourth wiring layer; a second conductive member being formed on surfaces in proximity to the first end section of the first wiring layer and the third wiring layer; and an insulating layer being formed in a space between the first wiring layer and the second conductive member, and the second wiring layer and the first conductive member and a space between the third wiring layer and the second conductive member, and the fourth wiring layer and the first conductive member.
Abstract:
One or more embodiments of the present disclosure relate to a circuit board having a substrate and a plurality of differential signal lines formed on the substrate and transmitting differential signals. The differential signal lines include a first signal line and a second signal line. The first signal line and the second signal line extend along at least two paths that are parallel to each other. The paths of the first signal line and the second signal line switch at path change portions, and the path change portions of neighboring differential signal lines are positioned at different distances away from an edge of the circuit board along the length direction of the differential signal line.
Abstract:
A wiring substrate includes a base film, a plurality of first wirings and a plurality of second wirings. The base film has a chip-mounting region configured for mounting a semiconductor chip thereon. The first wirings extend in a first direction from inside the chip-mounting region to outside the chip-mounting region, and include first connection end portions extending in a second direction different from the first direction. The first connection end portions may be formed inside the chip-mounting region and configured to electrically connect to the semiconductor chip. The second wirings extend in the first direction from inside the chip-mounting region to outside the chip-mounting region, and include second connection end portions extending in the opposite direction to the second direction in which the first connection end portions extend, and the second connection end portions may be formed inside the chip-mounting region and configured to electrically connect to the semiconductor chip.
Abstract:
Memory modules and methods for manufacturing memory modules are disclosed herein. In one embodiment, a memory module includes a substrate, a microelectronic device carried by the substrate, and a plurality of external contact pads operably coupled to the microelectronic device. The substrate includes a first major surface with a first longitudinal edge and a second longitudinal edge. The external contact pads are disposed on the first major surface proximate to the second longitudinal edge. The contact pads include a first contact pad with a first end proximate to the second longitudinal edge and a second contact pad with a second end proximate to the second longitudinal edge. The first end is spaced apart from the first longitudinal edge by a first distance, and the second end is spaced apart from the first longitudinal edge by a second distance different than the first distance.
Abstract:
The invention discloses a double-sided pluggable backplane, having one side on which one or more than one front backplane connector is disposed according to width of plot positions and the other side on which one or more than one rear backplane connector is disposed according to width of plot positions, the front backplane connector and the adjacent rear backplane connector being located at the same horizontal level on the double-sided pluggable backplane and staggered right-and-left in turn, meanwhile the front backplane connector and the rear backplane connector having uniform specifications and the same contact pin definitions. The double-sided pluggable backplane according to the present invention can realize interchangeability of front boards and rear boards and have no special requirements for design and manufacture of printed circuit boards and machining of the backplane.
Abstract:
An optical pickup actuator and a method thereof includes a bobbin having a lens to scan a laser beam on a track of a disc, a winding coil moving the bobbin on the track in focusing and tracking directions, and an integrated circuit board used as the bobbin using a printed circuit board manufacturing technology and integrally formed with the winding coil in a monolithic body. The bobbin used with the optical pickup actuator includes the printed circuit board, a plurality of tracking circuit patterns formed on both surfaces of the PCB, a plurality of focusing circuit patterns formed on the both surfaces of the PCB, a plurality of via holes formed on the PCB to electrically connect the tracking circuit patterns and the focusing circuit patterns, an objective lens mounting unit formed on the PCB, and a connecting pad through which a power is supplied to the tracking and focusing circuit patterns.
Abstract:
An inductor circuit board that is made compatible with broadband by reducing parasitic capacitance of an inductor. The inductor circuit board is comprised of a flexible substrate made of a material, such as polyimide or liquid polymer, a transmission line formed on the flexible substrate, and an inductor. The inductor has a three-dimensional conical structure in which component inductors having different inductances are continuously connected to each other, with one end thereof connected to a portion of the transmission line between an input end and an output end thereof, and is formed according to a transmission line pattern by wiring on a plurality of surface layers of the flexible substrate and connecting portions wired on the surface layers by vias that connect between the layer surfaces of the substrate, such that the inductor is expanded in a fan-like manner as it is farther from the one end connected to the transmission line. A portion of the indictor closer to the transmission line has a smaller inductance, and a portion of the same farther from the transmission line has a larger inductance.
Abstract:
Miniature circuitry and inductor components in which multiple levels of printed circuitry are formed on each side of a support panel, typically a printed circuit board or rigid flex. Electrical connection between the plural levels of circuitry and multiple windings around magnetic members are provided by plural plated through hole conductors. Small through hole openings accommodate a plurality of the plated through hole conductors since each is insulated from the others by a very thin layer of vacuum deposited organic layer such as parylene having a high dielectric strength. Adhesion of this plated copper to the organic layer is provided by first applying an adhesive promotor to the surface of the organic layer followed by the vacuum deposition of the organic layer.
Abstract:
A printed solenoid inductor delay line system comprises discrete delay sections, where the inductor is implemented in the form of a printed, spiraling solenoid, with the solenoid axis in the plane of the multi-layer printed circuit board (PCB).