Abstract:
There is provided a method for producing a metal/ceramic bonding article wherein a metal member 12 is formed so as to have a predetermined shape by printing a resist 14 in a predetermined region on the metal member 12 to etch the metal member 12 after bonding the metal member 12 to a ceramic member 10. In this method, at least one strip-like non-printed portion 16 having a width of, e.g. 0.01 to 0.5 mm, in which the resist is not printed, is provided in a region inwardly spaced from the outer periphery of the resist 14 by a predetermined distance, e.g. 0.01 to 0.5 mm, to control the etch rate in the outer peripheral portion of the metal member 12. Thus, the width and thickness of a fillet is freely changed. For example, a stepped portion (or a stepped portion and fillet) having a width of 0.05 to 0.5 mm and a thickness of 0.005 to 0.25 mm is formed in the outer peripheral portion of the metal member 12.
Abstract:
According to the present invention, when a semiconductor element having protruding electrodes formed thereon is connected to a circuit board via conductive resin, stable connection is made even when an electrode pitch is small on the semiconductor element. On semiconductor element package regions on the circuit board, a paste electrode material containing photopolymerizable materials is printed to form a film having a prescribed thickness, and this electrode material film is baked after exposure and development thereof so as to obtain circuit electrodes having edges warped in a direction of going apart from the circuit board surface. Then, the protruding electrodes and the concave surfaces of the circuit electrodes are brought in abutment with each other and connected via the conductive resin which surrounds the abutments between the respective electrodes and is held on the concave surfaces of the circuit electrodes. With this arrangement, the concave surfaces of the circuit electrodes act as saucers and prevent the conductive resin from being squeezed out, thereby eliminating possible occurrence of short circuits.
Abstract:
According to this invention, a wiring board includes a conductive pattern formed from leads each of which is formed on an organic layer and has a thickness t larger than a width W.
Abstract:
A conducting device for a display device is disclosed. It comprises one or more non-conducting base lines formed in predetermined locations on a substrate layer, and one or more conducting line structures formed over the non-conducting base lines on the substrate layer, wherein the non-conducting base lines raise the conducting line structures in height for increasing a cross-sectional area thereof for reducing a resistance of the conducting line structures.
Abstract:
It comprises the steps of: a) arranging a dielectric substrate (1) with at least one conducting plate (2) joined by an adhesive (8) to at least one of its sides; b) removing areas of said plate (2) by selective chemical milling to provide conducting tracks (5) joined to the substrate (1) and separated by spaces between tracks (6); c) applying and hardening by radiation an electroinsulating filler material (7) to fill said spaces between tracks (6), covering the tracks (5); d) applying an abrasion treatment to obtain flush upper surfaces (3) of the filler material (7) and of the tracks; and e) cooling, after step c) and during step d), the printed circuit board to reduce the temperature of the filler material (7) to under its glass transition temperature.
Abstract:
Trace configurations for carrying high-speed digital differential signals provide for reduced conduction loss and improved signal integrity. In one embodiment, a circuit board has a first set of conductive traces disposed on non-conductive material, and a second set of conductive traces parallel to the first set and disposed within the conductive material. The second set is separated from the first set by non-conductive material. Corresponding traces of the first and second sets may be in a stacked configuration. In other embodiments, conductive material may be provided between corresponding traces of the first and second sets resulting in an “I-shaped” or “U-shaped” cross-section. In yet other embodiments, the trace configurations have “T-shaped” and “L-shaped” cross-sections.
Abstract:
To achieve a large thickness of conductive metal-containing material in a feature of a product unit processed with a liquid-based etch process, the desired thickness of material is apportioned to the two opposing surfaces of a substrate to create a two-part feature. Conventional features are made by identically patterning two same-thickness metal-containing layers and electrically connecting the resulting patterned parts in any suitable manner. However, features may also be made that do not have identical parts on opposite sides of the substrate, the two parts being electrically connected but differing in thickness, in shape, or both Moreover, having two metal-containing layers separated by an insulator is also useful for allowing different sections of the same feature or circuit to cross one another without shorting, or to overlap in whole or in part without shorting.
Abstract:
An electric junction box is provided, by which the circuit density can be increased and the whole structure can be lightweight and compact. The electric junction box includes: an insulating board; and a plurality of electrically conductive metal wire rods having a square or a nearly square shape in cross section, which are arranged on the insulating board, wherein an end of at least one of the metal wire rod extends curvedly or straight forming a terminal part and at least a portion of the terminal part protrudes toward a housing of a body of the electric junction box. At least one of the metal wire rods is cut to a suitable length, bent into a suitable shape, and arranged on the insulating board. One terminal part of the metal wire rod protrudes toward the housing, while an opposite terminal part of the at least one metal wire rods is connected to a component or terminal or, alternatively, protrudes toward another housing.
Abstract:
Priorly, semiconductor devices wherein a flexible sheet with a conductive pattern was employed as a supporting substrate, a semiconductor element was mounted thereon, and the ensemble was molded have been developed. In this case, problems occur that a multilayer wiring structure cannot be formed and warping of the insulating resin sheet in the manufacturing process is prominent. In order to solve these problems, a laminated plate 10 formed by laminating a first conductive film 11 and a second conductive film 12 is covered with a photoresist layer PR having opening portions 13 with inclined surfaces 13S, a conductive wiring layer 14 is formed in the opening portions by electrolytic plating to form inverted inclined surfaces 14R, and then, when covering the same with the sealing resin layer 21, an anchoring effect is produced by making the sealing resin layer 21 bite into the inverted inclined surfaces 14R so as to strengthen bonding of the sealing resin layer 21 with the conductive wiring layer 14.
Abstract:
The present invention is a method and apparatus for providing an electrical substrate. The electrical substrate comprises a dielectric layer; and a first conductive layer attached to the dielectric layer, in which the first conductive layer has an elliptical cross-section. The electrical substrate may be used in a flexible circuit that connects the read/write head to electronic circuitry in a hard disk drive.