Abstract:
Communications plugs are provided which include a printed circuit board having a plurality of elongated conductive traces and a plurality of plug blades. Each plug blade has a first section that extends along a top surface of the printed circuit board and a second section that extends along a front edge of the printed circuit board. Additionally, each plug blade may have a thickness that is at least twice the thickness of the elongated conductive traces. The plug blades may be low profile plug blades that are manufactured separately from the printed circuit board.
Abstract:
Printed circuit boards for communications connectors are provided that include a dielectric substrate formed of a first insulative material having a first dielectric constant. First and second pairs of input terminals and first and second pairs of output terminals are provided on the dielectric substrate. A first differential transmission line electrically connect the first pair of input terminals to the first pair of output terminals, and a second differential transmission line electrically connect the second pair of input terminals to the second pair of output terminals. The dielectric substrate includes an opening that is positioned between the conductive paths of the first differential transmission line, the opening containing a second insulative material having a second dielectric constant.
Abstract:
A connection unit includes: a ceramic substrate; a first signal line on the ceramic substrate; a first grounded conductor on the ceramic substrate and electromagnetically coupled to the first signal line; a first lead pin having a first end connected to an upper surface of the first signal line and a second end protruding beyond the ceramic substrate; a second lead pin having a first end connected to an upper surface of the first grounded conductor and a second end protruding beyond the ceramic substrate; a flexible substrate including an insulating layer through which the first and second lead pins penetrate, a second signal line on a first major surface of the insulating layer and connected to the second end of the first lead pin, and a second grounded conductor on a second major surface of the insulating layer and connected to the second end of the second lead pin.
Abstract:
Communications plugs are provided which include a printed circuit board having a plurality of elongated conductive traces and a plurality of plug blades. Each plug blade has a first section that extends along a top surface of the printed circuit board and a second section that extends along a front edge of the printed circuit board. Additionally, each plug blade may have a thickness that is at least twice the thickness of the elongated conductive traces. The plug blades may be low profile plug blades that are manufactured separately from the printed circuit board.
Abstract:
Interfaces for electrical (e.g., lighting) devices involve use of electrically conductive edge contacts arranged on or protruding from edges of printed circuit boards (PCBs) that provide or facilitate electrical connections to first and second externally accessible electrical contacts, such as may include threaded and foot contacts of a lighting device including a screw-shaped male base. First and/or second edge contacts of a PCB may protrude through first and second openings in a housing to form first and second externally accessible contact, or directly engage first and second externally accessible contact elements associated with (e.g., retained by) the housing. A contact element retained by a housing may define a slot in the interior of the housing to directly engage an edge contact of the PCB. Electric power is supplied to the PCB via edge contacts without need for intervening wires or soldered connections.
Abstract:
Patch cords are provided that include a communications cable that has at least first through fourth conductors and a plug that is attached to the cable. The plug includes a housing that receives the cable, a printed circuit board, first through fourth plug contacts, and first through fourth conductive paths that connect the first through fourth conductors to the respective first through fourth plug contacts. The first and second conductors, conductive paths, and plug contacts form a first differential transmission line, and the third and fourth conductors, conductive paths, and plug contacts form a second differential transmission line. Each of the first through fourth plug contacts has a first segment that extends longitudinally along a first surface of the printed circuit board, and the signal current injection point into the first segment of at least some of the first through fourth plug contacts is into middle portions of their respective first segments.
Abstract:
The present invention relates to an electric and/or electronic circuit including a printed circuit board (20), at least one separate circuit board (10) and at least one power connector (12) for said printed circuit board (20). The at least one power connector (12) is connected or connectable to a corresponding counterpart. A number of electric and/or electronic components (22) is sold at the separate circuit board (10). The at least one separate circuit board (10) is connected to the printed circuit board (20) by a number of solder joints (16). The solder joints (16) are connected to the separate circuit board (10) by a through-hole-technology. The solder joints (16) are connected to the printed circuit board (20) by SMD (surface mount device) technology. At least one power connector (12) is fastened at the separate circuit board (10) by the through-hole-technology.
Abstract:
There is provided a communication device that includes a first circuit board which includes a first ground pattern (GND) and a first signal line formed on a substrate, a ground pin electrically coupled with the first GND, where the ground pin protrudes from an end of the substrate, and a signal pin formed in the substrate and electrically coupled with the first signal line, where the signal pin protrudes from the end. The communication device further includes a send circuit board which includes a second GND and a second signal line, wherein when an end of the circuit board is inserted into a space between the ground pin and the signal pin, the first signal line and the second signal line are electrically coupled with each other via the signal pin and the first GND and the second GND are electrically coupled with each other via the ground pin.
Abstract:
A direct current (DC) link capacitor module includes a printed circuit board (PCB) formed by sequentially disposing a first electrode substrate, an insulation substrate, a second electrode substrate, a third electrode substrate; a plurality of DC link capacitors connected in parallel to each of the first electrode substrate and the second electrode substrate; a plurality of first Y-capacitors connected in series to each of the first electrode substrate and the third electrode substrate, and connected in parallel to the DC link capacitors; and a plurality of second Y-capacitors connected in series to each of the first electrode substrate and the third electrode substrate, and connected in parallel to the first Y-capacitors, thereby achieving a miniaturization and facilitating a fabrication by connecting the plurality of DC link capacitors using the PCB.
Abstract:
In a circuit device of the present invention, the lower surface side of a circuit board and part of side surfaces thereof are covered with a second resin encapsulant, and the upper surface side and the like of the circuit board are covered with a first resin encapsulant. Since heat dissipation to the outside of the circuit device is achieved mainly through the second resin encapsulant, a particle size of filler contained in the second resin encapsulant is made larger than a particle size of filler contained in the first resin encapsulant. Heat dissipation to the outside of the circuit device is greatly improved.