Abstract:
A package for power converters in which all parts are electrically connected with one multi-layer circuit board. A sub-package with at least a power-dissipating chip, having a bare top up-facing heat-slug is electrically connected with the board by a plurality of symmetric leads. A heat spreader is directly attached onto the bare top heat-slug of the sub-packages, planar magnetic parts and top surfaces of other components with thermally conductive insulator. The heat dissipated by the sub-packages is transferred to the attached heat spreader by the bare top heat-slug, and further transferred to the ambient. The assembly features compact and inexpensive power converter package with improved electrical performance and enhanced thermal management.
Abstract:
A board for connecting a bare semiconductor die with a bond pad arrangement which does not conform to a master printed circuit board with a specific or standardized pin out, connector pad, or lead placement arrangement. The board comprises a printed circuit board including first elements, such as minute solder balls, pins, or bond wires, for making electrical contact between the board and the master board, and second elements, such as minute solder balls, pins, or bond wires, for making electrical contact between the semiconductor die and the board. The board has circuit traces for electrical communication between the board/master board electrical contact elements, and the semiconductor die board electrical contact elements.
Abstract:
A package for power converters in which all parts are electrically connected with one multi-layer circuit board. A sub-package with at least a power-dissipating chip, having a bare top up-facing heat-slug is electrically connected with the board by a plurality of symmetric leads. A heat spreader is directly attached onto the bare top heat-slug of the sub-packages, planar magnetic parts and top surfaces of other components with thermally conductive insulator. The heat dissipated by the sub-packages is transferred to the attached heat spreader by the bare top heat-slug, and further transferred to the ambient. The assembly features compact and inexpensive power converter package with improved electrical performance and enhanced thermal management.
Abstract:
A stacked semiconductor device structure comprising: a plurality of semiconductor modules each of which includes a substrate and at least one semiconductor device mounted on the substrate; a stacking device for stacking the semiconductor modules on one another; and a surface mount device for surface mounting on a further substrate for a system appliance the semiconductor modules stacked on one another by the stacking device.
Abstract:
In one embodiment of the invention, a stacking element includes a printed circuit board (PCB) and a plurality of solder bumps. The PCB has a top side and a bottom side. The top side is attached to first pins of a first device. The plurality of solder bumps are on the bottom side and attached to upper areas of second pins of a second device to provide electrical connections between the first pins and the second pins.
Abstract:
A printed wiring board (1) having a cavity (20) for mounting electronic parts therein and a method for manufacturing thereof, comprising: an upper wiring substrate (1A) having flat surfaces on both sides; a lower plate body (1B) being fixed on a reverse side surface of the upper wiring substrate, and being formed with the cavity (20) in a part thereof, for receiving an electronic part (30) within an inside thereof; conductor layers (3) provided on both side surfaces of the upper wiring substrate for mounting electronic parts thereon, by forming plated through-holes (7) or flat through-holes (7′), in particular with in a region of the cavity on the reverse side surface thereof; and external electrodes (5) formed on side-end surface or on a lower-end surface of the printed wiring board, wherein at least an electronic part, for example, hybrid IC, chip-like parts, functional parts, such as SAW filter, sensor parts, etc., can be received or stored within a space of the cavity (20), thereby enabling the mounting of the electronic parts thereon with high density and reliability, such as on a motherboard (40).
Abstract:
A system and method for reducing an apparent height of a board system are provided. The board system may include, for example, a carrier, a component, a printed circuit board and/or a solder material. The component is mounted on a first side of the carrier. The printed circuit board has a hole that is structured to accommodate the component. The solder material solders the carrier to the printed circuit board and provides a structural bond between the carrier and the printed circuit board. At least one portion of the solder material provides an electrical coupling between the carrier and the printed circuit board and at least one portion of the component is maintained in the hole after the carrier is soldered to the printed circuit board.
Abstract:
A printed wiring board has a circuit substrate 6 having a conductor circuit 5 and a through hole 60, and also has a joining pin 1 inserted into the through hole. The joining pin is manufactured by using a material unmelted at a heating temperature in joining the joining pin to an opposite party pad 81. The joining pin is constructed by a joining head portion 11 greater than an opening diameter of the through hole and forming a joining portion to the opposite party pad, and a leg portion 12 having a size capable of inserting this leg portion into the through hole. The leg portion is inserted into the through hole and is joined to the through hole by a conductive material such as a soldering material 20, etc. A joining ball approximately having a spherical shape instead of the joining pin can be also joined to the through hole by the conductive material.
Abstract:
Methods and apparatuses for an electronic assembly. The electronic assembly has a first object created and separated from a host substrate. The first object has a first electrical circuitry therein. A carrier substrate is coupled to the first object wherein the first object is being recessed below a surface of the carrier substrate. The carrier substrate further includes a first carrier connection pad and a second carrier connection pad that interconnect with the first object using metal connectors. A receiving substrate, which is substantially planar, including a second electrical circuitry, a first receiving connection pad, and a second receiving connection pad that interconnect with the second electrical circuitry using the metal connectors. The carrier substrate is coupled to the receiving substrate using the connection pads mentioned.
Abstract:
A low stress, low profile, cavity down wire bond or flip-chip BGA package is formed by injection molding or thermosetting of liquid crystal plastic (LCP) to form a die carrier including a polymer solder grid array (PSGA) of standoff posts formed during molding of the die carrier. The standoff posts are coated with copper during plating of the die carrier, on the surfaces of which conductive traces are etched from the standoff posts into a die cavity, including on the sidewalls of the die cavity, to wire bond sites or small solderable areas at the bottom of the cavity. After mounting of a wire bond or flip-chip integrated circuit die within the die cavity of the die carrier, the packaged integrated circuit is mounted on a main printed circuit board (PCB) substrate utilizing conductive paste to electrically connect the standoff posts to conductive solderable areas on the main PCB substrate. The high aspect ratio and/or large height of the plated standoff posts reduces stress on the solder joints and, combined with the flexibility of the LCP die carrier, improves solder joint reliability after reflow and during operation.