Abstract:
A compact high performance absorbance detector including a flashlamp light source and folded optics system with ruled grating reflecting beam splitter for minimizing flash to flash angular pattern and spectral variations of the flashlamp.
Abstract:
Light irradiated to a sample is detected by a detector in order to measure the optical properties of the sample. The image of a minute virtual light source for the light is focused in the neighborhood of the measuring face of the sample by a first optical system arranged between the light source and the sample. The light outgoing from the sample is incident to the detector by way of a second optical system arranged between the sample and the detector and having conjugate points in the neighborhood of the measuring face of the sample and of the light receiving point of the detector.
Abstract:
A modular spectrometer system is disclosed which includes various types of standard building blocks which permit: (a) a multiple accessory system in which experiments can be readily switched from one accessory to another; and (b) easy and cost effective revision of the multiple accessory system as desired. Optical switch components are provided which facilitate steering and switching of the radiation paths, and which are capable of being assembled from standard parts. Modular connecting tubes and interface elements are provided to interconnect components in the system. Component substitutions and position adjustments may be readily accomplished without loss of alignment in the system.
Abstract:
In an IR-FR- spectrometer, a light beam (10) is guided from a source to a detector (31) and is passed, in a first mode of operation, by means of first optical means (12, 19, 20) through a sample to be measured (28) and, in a second mode of operation, by second optical means (12, 22, 21) through a reference sample (32). The first and second optical means comprise a common mirror element (12) having at least first and second mirror surfaces (13, 14, 15, 16) which are inclined relative to each other. The mirror surfaces abut in at least one point. There is provided means for moving the mirror element (12) relative to the light beam so that during such relative movement the impinging point of the light beam (10) is displace from the first mirror surface (13), over onto the second mirror surface (14).
Abstract:
A spectrophotometer includes means for ensuring that the active area of a detector is always filled regardless of the resolution aperture setting of the instrument.
Abstract:
A reflecting beam splitting objective employing only three mirrors obtains a high reflective efficiency. In one embodiment, the objective contains a small intercepting mirror between primary and secondary mirrors of a Cassegrain mirror arrangement. The position of the intercepting mirror is determined so that the mirror receives an input beam and directs that beam onto a first portion of the secondary mirror without vignetting the beam when it is reflected from the secondary mirror to a first portion of the primary mirror or by cutting off part of the image transmitted from the second portion of the secondary mirror to a focus behind the primary mirror. The objective may use all energy that is input into the objective to image a sample. The objective has demonstrated particular utility in the field of infrared spectroscopy of small samples.
Abstract:
A device for determining the relative composition of a sample of a gas by comparison of the Raman-scattered light of the sample with that of a known gas comprising: a means for passing a single light source through the unknown and the known gases, choppers to alternate the Raman-scattered light into a common light detection and measuring system, optical fiber networks for spatially mixing the resulting Raman scattered light from each sample and directing the mixed light to selective detectors, and a compiler to record the light intensity of each wavelength of Raman-scattered light as a function of the sample from which it originated.
Abstract:
In a ratio-type double-beam infrared spectrophotometer, an output signal of the photodetector is frequency discriminated to derive therefrom a component having a fundamental frequency f corresponding to at least one of the sample and reference beam intensities and another component having a frequency 2f corresponding to at least the other beam intensity, and these frequency components are computed to determine the ratio of the sample beam intensity to the reference beam intensity. According to the invention, the component of fundamental frequency f is synchronously rectified into a rectified signal which is further differentiated into a differential value, the differential value is subtracted from the rectified signal to give a signal which is compensated for rapid changes of spectral absorption due to the presence of H.sub.2 O and CO.sub.2 in the beam paths during wavelength scanning and is used as the f-component signal.
Abstract:
This invention relates to an optical system which will enable easy use in the field. Known systems either require sample and reference targets to be imaged within the same telescope field or do not enable accurate identification of the measuring field in a view finder.The present invention overcomes this problem by providing a system having a first branch (10, 12) and a second branch (14) which receive light from a sample and reference target respectively. A shutter 22 sequentially allows light from the two branches to pass to a mirror 20 having a slit 30, reflective portions 32 and transparent portions 34. Light from the first branch passes through portions 30 and 34 to a detecting branch (42, 46, 50-56) and some light is reflected through a lens 16 to eye piece 19. Similarly some light from the second branch passes through mirror 30 and 34 to eye piece 19 and some light is reflected to the detecting branch. Accordingly the measuring field can be accurately identified by looking through the eye piece 19 while at the same time light is directed to the detecting branch for analysis.
Abstract:
A multichannel spectrophotometer has a single radiant energy source formed into a multiplicity of radiant energy beams which are each simultaneously intercepted by segments of a rotary source filter wheel, the spectral radiant energy output selected by each filter segment being directed into a separate source radiant energy conduit and transmitted to a remote sample station where a cuvette containing a sample to be analyzed is located, the radiant energy outputs of each cuvette being directed into a separate detector radiant energy conduit where each conduit is intercepted by a filter segment of a second rotating detector filter wheel identical to the source filter wheel and rotated in aligned synchronism therewith, the spectral radiant energy outputs of each segment of the detector filter wheel being further directed into a separate radiant energy detector and signal processing electronics associated with that sample station or spectrophotometer channel from which the radiant energy signal being detected and analyzed has been received. Central control, timing and display electronics are shared by each channel and may be overall programmed and controlled by computer. In one application involving the measurement of fluorescence, the filters of the detector filter wheel will be different from the filters of the source filter wheel so as to excite the sample cuvette at one wavelength and to measure fluorescent response at another.