Abstract:
Porous spheroidal alumina particulate solids that comprise an alumina filler in an amount of about 0.1% to about 25% by weight of Al2O3 and have a mechanical resistance to shocks measured by spheres impacting against a target at the speed of 20 m/s such that the fines fragmentation percentage, of a size of less than 50% of the average size of the initial spheres, is less than 5% by weight. Preparation of these spheres by coagulation in drops from an oil-in-water-type emulsion. Application of these spheres as a catalyst substrate or as an adsorbent.
Abstract translation:多孔球状氧化铝颗粒固体,其包含约0.1重量%至约25重量%的Al 2 O 3的量的氧化铝填料,并且具有通过球体以20m / s的速度撞击靶材测量的冲击的机械抗性,使得 尺寸小于初始球体平均尺寸的50%的细碎碎片百分比小于5重量%。 通过从水包油型乳液中滴落而制备这些球体。 这些球体作为催化剂底物或吸附剂的应用。
Abstract:
Energy devices such as batteries and methods for fabricating the energy devices. The devices are small, thin and lightweight, yet provide sufficient power for many handheld electronics.
Abstract:
A process for the preparation of substituted amines by catalytic hydrogenation of substituted organic nitro compounds with hydrogen or hydrogen-containing gas mixtures in the presence of a shaped Raney catalyst as the hydrogenation catalyst, wherein the Raney catalyst is in the form of hollow bodies or shell-activated tablets. Nickel, cobalt, copper, iron, platinum, palladium or ruthenium are preferably used as catalytically active constituents.
Abstract:
A fixed bed Raney copper catalyst, which is doped with iron, noble metals or other metals, is employed as the fixed bed catalyst in the fixed bed dehydrogenation of alcohols.
Abstract:
A method for producing small spherical particles that are especially useful as catalysts and catalyst supports employed in chemical processes is disclosed. According to some embodiments, the method includes impregnating a porous support with a metal or metal oxide and dissolving the support to release spherical particles. In certain embodiments the support that is employed in the method comprises a number of spherical voids which determine the size of the spherical particles, and preferably have micrometer range diameters. One embodiment of an attrition resistant Fischer-Tropsch catalyst comprises a plurality of micrometer size spherical metal and/or metal oxide particles that are prepared according to the above-described method.
Abstract:
A process for the preparation of at least one spherically shaped porous microcomposite is provided which microcomposite comprises a perfluorinated ion-exchange polymer containing pendant sulfonic and/or carboxylic acid groups entrapped within and highly dispersed throughout a network of inorganic oxide, wherein the weight percentage of the perfluorinated ion-exchange polymer in the microcomposite is from about 0.1 to about 90 percent, and wherein the size of the pores in the microcomposite is about 0.5 nm to about 75 nm; said process comprising the steps of: (a) combining a water-miscible inorganic oxide network precursor system, a water-miscible liquid composition comprising a perfluorinated ion-exchange polymer containing pendant sulfonic and/or carboxylic acid groups, and an organic liquid to form a two phase liquid system; (b) agitating the two phase liquid system sufficiently to sustain a dispersion of the water-miscible phase in the shape of spheres in the organic phase; (c) allowing the inorganic oxide network precursor system to form a network of inorganic oxide to yield at least one spherically shaped porous microcomposite having the above-described properties; and (d) recovering the at least one spherically shaped porous microcomposite.
Abstract:
The present invention provides a process for producing spherical catalyst carrier of silica, silica-alumina composition, zirconia-alumina composition, titania-alumina composition, boria-alumina composition, or boria-silica-alumina composition which has almost the same pore characteristics as alumina hydrate gel, silica-alumina hydrate gel, zirconia-alumina hydrate gel, or titania-alumina hydrate gel (or alumina hydrate paste, boria-alumina hydrate paste, or boria-silica-alumina hydrate paste) as the major raw material, has uniform sphericity and smooth surface and homogeneity, and has a macropore volume that can be controlled. The process comprises adding a polysaccharide solution to any of alumina, silica-alumina, zirconia-alumina, or titania-alumina in the form of hydrate gel, or alumina, boria-alumina, or boria-silica-alumina in the form of hydrate paste, mixing them to form a slurry with a controlled concentration, dropping the slurry into a solution containing multivalent metal ions, thereby forming spherical hydrogel, and performing the additional steps of aging, washing, drying, and calcining.
Abstract:
A process for the preparation of at least one spherically shaped porous microcomposite is provided which microcomposite comprises a perfluorinated ion-exchange polymer containing pendant sulfonic and/or carboxylic acid groups entrapped within and highly dispersed throughout a network of inorganic oxide, wherein the weight percentage of the perfluorinated ion-exchange polymer in the microcomposite is from about 0.1 to about 90 percent, and wherein the size of the pores in the microcomposite is about 0.5 nm to about 75 nm; said process comprising the steps of: (a) combining a water-miscible inorganic oxide network precursor system, a water-miscible liquid composition comprising a perfluorinated ion-exchange polymer containing pendant sulfonic and/or carboxylic acid groups, and an organic liquid to form a two phase liquid system; (b) agitating the two phase liquid system sufficiently to sustain a dispersion of the water-miscible phase in the shape of spheres in the organic phase; (c) allowing the inorganic oxide network precursor system to form a network of inorganic oxide to yield at least one spherically shaped porous microcomposite having the above-described properties; and (d) recovering the at least one spherically shaped porous microcomposite.
Abstract:
Disclosed is a method for producing methacrolein, which comprises subjecting isobutylene and/or tert-butanol to gas phase catalytic oxidation with a molecular oxygen-containing gas in the presence of an oxide catalyst composition represented by the formula Mo.sub.12 Bi.sub.a Ce.sub.b K.sub.c A.sub.e B.sub.f O.sub.g, wherein A is Co solely, or a mixture of Co and Mg wherein the atomic ratio of Mg to Co is not more than 0.7, B is Rb, Cs or a mixture thereof, and a, b, c, d, e, f and g are, respectively, the specific atomic ratios of Bi, Ce, K, Fe, A, B and O, relative to 12 atoms of Mo. By the method of the present invention, it is possible to stably produce methacrolein in high yield, using an oxide catalyst composition which has a relatively simple structural composition and therefore can be easily prepared, and which has not only a prolonged catalyst life due to excellent thermal stability and reduction resistance, but also excellent selectivity for methacrolein, wherein the catalyst composition contains Bi, Ce, K and Fe in specific amounts and in a specific relative amount ratio, and does not contain such elements as cause environmental pollution and toxicity problems, and also does not require the use, as raw materials for the preparation thereof, compounds having low solubility in water, such as compounds of W, Sb and Nb, which exhibit desired catalytic performances but are disadvantageous because of difficulties in obtaining uniform catalyst compositions.
Abstract:
A catalyst comprising a porous organic or mineral support, preferably silica, and an acidic phase containing B(OSO.sub.2 CF.sub.3).sub.3 and at least one acid selected from the group formed by sulphuric acid (H.sub.2 SO.sub.4) and trifluoromethane sulphonic acid (CF.sub.3 SO.sub.3 H), said support having been impregnated with said acidic phase and said support prior to impregnation having a total pore volume of 0.1-0.6 cm.sup.3 /g, said catalyst being essentially constituted by particles with an average diameter of between 0.1 and 30 .mu.m, said catalyst being characterized in that said acidic phase contains:between 0.1 and 70% by weight of B(OSO.sub.2 CF.sub.3).sub.3 ;between 0 and 90% by weight of H.sub.2 SO.sub.4 ;between 0 and 90% by weight of CF.sub.3 SO.sub.3 H.is suitable for the catalytic alkylation of isobutane and/or isopentane in the presence of at least one olefin containing 2 to 6 carbon atoms per molecule, preferably 3 to 6 carbon atoms per molecule.
Abstract translation:一种催化剂,其包含多孔有机或无机载体,优选二氧化硅,以及含有B(OSO 2 CF 3)3和选自由硫酸(H 2 SO 4)和三氟甲磺酸(CF 3 SO 3 H)形成的基团中的至少一种酸)的酸性相,所述载体具有 在浸渍之前用所述酸性相和所述载体浸渍,其总孔体积为0.1-0.6cm 3 / g,所述催化剂基本上由平均直径为0.1-30μm的颗粒构成,所述催化剂的特征在于, 所述酸性相含有:0.1-70重量%的B(OSO 2 CF 3)3; 0至90重量%的H 2 SO 4; 0至90重量%的CF 3 SO 3 H。 适用于在每分子含有2至6个碳原子,优选每分子3至6个碳原子的至少一种烯烃的存在下异丁烷和/或异戊烷的催化烷基化。