Abstract:
A structurally promoted precipitated catalyst containing crystalline silica, at least one chemical promoter selected from the group consisting of alkali metals, and iron, the structurally promoted precipitated catalyst comprising maghemite and hematite catalytic phases, and exhibiting a main reduction peak temperature, as determined by TPR, in the range of from about 210° C. to about 350° C. A method of producing the structurally promoted precipitated catalyst is also provided.
Abstract:
A process for the production of chlorine by thermo-catalytic gas phase oxidation of hydrogen chloride and oxygen is described, the process comprising at least (1) a cerium oxide catalyst and (2) an adiabatic reaction cascade, containing at least two adiabatic stages connected in series with intermediate cooling, wherein the molar O2/HCl-ratio is equal or above 0.75 in any part of the cerium oxide catalyst beds.
Abstract:
The invention relates to a process for producing middle distillates from a paraffinic feedstock produced by Fischer-Tropsch synthesis, implementing a hydrocracking/hydroisomerization catalyst comprising at least one hydro-dehydrogenating metal selected from the group formed by the metals from group VIB and from group VIII of the periodic table and a substrate comprising at least one crystallized IZM-2 solid having a chemical composition, expressed on an anhydrous base, in terms of oxide moles, by the following general formula: XO2:aY2O3:bM2/nO, wherein X represents at least one tetravalent element, Y represents at least one trivalent element and M is at least one alkali metal and/or an alkaline earth metal of valency n, a and b representing respectively the number of moles of Y2O3 and M2/nO and a is between 0 and 0.5 and b is between 0 and 1.
Abstract:
The invention is in the field of modified carbon products. More in particular, the invention is in the field of graphitized activated carbon bodies. The invention is directed to carbon bodies and ferromagnetic carbon bodies, the production of these bodies from activated carbon, and the applications of the carbon bodies and ferromagnetic carbon bodies, for instance in water treatment and in electrochemical applications.
Abstract:
The invention relates to a process for the preparation of alcohols by hydrogenation of aldehydes, in which use mixture comprising at least one aldehyde and at least one accompanying component is brought into contact, in the presence of hydrogen, with a heterogeneous catalyst, giving a product mixture which comprises at least the alcohol corresponding to the hydrogenated aldehyde, and at least one by-product, where the catalyst comprises a support material, and nickel and copper applied thereto. The invention also includes a chromium-free catalyst suitable for hydrogenating aldehyde mixtures with different chain lengths, in particular those which originate from different hydroformylations and can also comprise substances with C═C double bonds.
Abstract:
In one embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles. In another embodiment, a system includes a nanoporous gold structure comprising a plurality of ligaments, and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase.
Abstract:
A porous composite metal oxide, including a mixture of first ultrafine particles containing alumina and second ultrafine particles containing zirconia, wherein the first ultrafine particles and the second ultrafine particles are uniformly dispersed in such a way as to satisfy a condition that standard deviations of content ratios (% by mass) of all metal elements contained in the porous composite metal oxide at 0.1% by mass or more are each 10 or less, the standard deviations being obtained by measuring content ratios of the metal elements at 100 measurement points within a minute analysis region of 20 nm square by energy dispersive X-ray spectroscopy using a scanning transmission electron microscope equipped with a spherical aberration correction function.
Abstract:
To provide a catalyst having excellent performance and durability by improving a NOx reduction ratio at 350° C. or higher without deteriorating excellent durability of a Ti—V—Mo—P catalyst in view of problems of conventional art. A NOx reduction catalyst for exhaust gas, which is composed of a catalyst composition that comprises titanium (Ti), an oxide of phosphorous, molybdenum (Mo) and/or tungsten (W), oxide of vanadium (V), and high-silica zeolite that has an SiO2/Al2O3 ratio of not less than 20 is obtained by kneading in the presence of water, drying and calcining (1) titanium oxide, and phosphoric acid or an ammonium salt of phosphoric acid in an amount of more than 1% by weight and not more than 15% by weight relative to the titanium oxide in terms of H3PO4, (2) an oxo acid or oxo acid salt of molybdenum (Mo) and/or tungsten (W) and an oxo acid salt of vanadium (V) or vanadyl salt respectively in an amount of more than 0% by atom and not more than 8% by atom relative to the titanium oxide and (3) high-silica zeolite in an amount of more than 0% by weight and not more than 20% by weight relative to the titanium oxide.
Abstract translation:考虑到现有技术的问题,通过提高350℃以上的NOx还原率而不劣化Ti-V-Mo-P催化剂的优异耐久性,提供具有优异性能和耐久性的催化剂。 用于排气的NOx还原催化剂由包含钛(Ti),磷的氧化物,钼(Mo)和/或钨(W),钒(V)的氧化物)和高二氧化硅 通过在水的存在下捏合,干燥和煅烧(1)氧化钛,磷酸或磷酸铵盐的量大于1重量%,得到SiO 2 / Al 2 O 3比不小于20的沸石, (ⅱ)钼(Mo)和/或钨(W)和钒(W)的含氧酸盐的含氧酸或含氧酸盐(V)和钒的含氧酸盐(重量),并且不超过15重量% V)或氧钒盐分别以相对于氧化钛大于0原子%且不超过8原子%的量,和(3)高于0重量%且不超过0重量%的高硅石沸石 相对于氧化钛为20重量%以下。
Abstract:
A process is disclosed for producing ethanol, comprising contacting acetic acid and hydrogen in a reactor in the presence of a catalyst comprising a binder, a mixed oxide, and at least two promoter metals comprising ruthenium and bismuth. The mixed oxide preferably also comprises cobalt and tin.
Abstract:
A catalyst composition for isomerization of paraffins includes at least one metal, at least one heteropoly acid and a support material. Further provided are a process for preparation of the catalyst composition and a process for isomerization of paraffins using the catalytic composition.