Abstract:
A linear-motion stage that is angularly or radially symmetric or asymmetric, or monolithic may be used as the moving mechanism in a Fourier transform spectrometer. In embodiments, a linear-motion stage includes a base; a first multiple-arm linkage extending from the base to a first carriage attachment piece; and a second multiple-arm linkage extending from the first carriage attachment piece to the base. The first multiple-arm linkage constrains a motion of the first carriage attachment piece to motion in a first plane and the second multiple-arm linkage constrains the first carriage attachment piece to motion in a second plane, the first and second planes intersecting at a plane intersection line. The first and second multiple-arm linkages constrain the motion of the first carriage attachment piece along a carriage motion line.
Abstract:
A spectroscopic measurement device includes a dark filter that is arranged on an optical path between an imaging optical system and a light detection unit and includes a plurality of regions having different transmittances, the filter being configured such that a fixed reflected measurement light and a movable reflected measurement light that are guided to a same point by the imaging optical system and form interference light are transmitted through a same region; and an arithmetic processing unit that obtains an interferogram of the measurement light at a transmittance corresponding to each of two or more regions from a detection signal of each pixel of a light detection unit when a movable reflection unit is moved, and obtains a spectrum of the measurement light based on the interferogram.
Abstract:
The present invention causes measurement light, emitted from an object and to be measured, to enter a fixed mirror and a movable mirror forming interfering light between the measurement light reflected by the fixed mirror and measurement light reflected by the movable mirror. Change to the intensity of the interference light of measurement light is obtained by moving the movable mirror unit, acquiring the interferogram of measurement light. Reference light of a narrow wavelength band included in a wavelength band of the measurement light enters the fixed mirror and the movable mirror, forming interference light of the reference light. The movable mirror is moved to correct the interferogram of measurement light, which is at the same wavelength as the reference light in the measurement light, and the reference light, and a spectrum of the measurement light is acquired based on the corrected interferogram.
Abstract:
A Micro-Electro-Mechanical System (MEMS) apparatus provides for self-calibration of mirror positioning of a moveable mirror of an interferometer. At least one mirror in the MEMS apparatus includes a non-planar surface. The moveable mirror is coupled to a MEMS actuator having a variable capacitance. The MEMS apparatus includes a capacitive sensing circuit for determining the capacitance of the MEMS actuator at multiple reference positions of the moveable mirror corresponding to a center burst and one or more secondary bursts of an interferogram produced by the interferometer based on the non-planar surface. A calibration module uses the actuator capacitances at the reference positions to compensate for any drift in the capacitive sensing circuit.
Abstract:
Feedback control of an object which moves back and forth in a straight line along a linear guide is performed through PID control. A parameter adjustment unit which determines the control parameters to be used for PID control performs feedback control and determines the optimal value of control parameters by means of an evaluation function based on the error between the measured value of the current velocity and the target velocity, for the control parameters of maximum reverse voltage and at least one from among proportional coefficient (CP), differential coefficient CD), integral coefficient CI), and frictional coefficient (CF).
Abstract:
An optical path of measurement light emitted from a measurement light source is overlaid by a beam combiner on an optical path of reference light emitted from a reference light source. The measurement light emitted from the measurement light source includes light in the sensitivity wavelength range (S1) of a measurement light detector and light in the sensitivity wavelength range (S2) of a reference light detector. An interferometer includes a wavelength separation filter that cuts light in at least a part of the sensitivity wavelength range (S2) of the reference light detector, of light included in the wavelength range of the measurement light.
Abstract:
An imaging transform spectrometer, and method of operation thereof, that is dynamically configurable “on demand” between an interferometric spectrometer function and a broadband spatial imaging function to allow a single instrument to capture both broadband spatial imagery and spectral data of a scene. In one example, the imaging transform spectrometer is configured such that the modulation used for interferometric imaging may be dynamically turned ON and OFF to select a desired mode of operation for the instrument.
Abstract:
An interference spectrophotometer including a movable mirror unit having a movable mirror capable of reciprocating movement; a stationary mirror; an infrared light source unit which emits an infrared light; a beam splitter; an interference light detection unit which detects light intensity information of light transmitted or reflected by a sample; a movable mirror velocity information detection unit which detects movable mirror velocity information for movable mirror; and a control unit which acquires the light intensity information and movable mirror velocity information and computes the absorption or transmission spectrum of the sample; wherein the interference spectrophotometer further comprises a storage unit which stores a target movable mirror velocity range, and control unit does not employ light intensity information obtained when the movable mirror velocity of movable mirror was outside the target movable mirror velocity range for computing the absorption or transmission spectrum of the sample.
Abstract:
The present invention causes measurement light, emitted from an object and to be measured, to enter a fixed mirror and a movable mirror forming interfering light between the measurement light reflected by the fixed mirror and measurement light reflected by the movable mirror. Change to the intensity of the interference light of measurement light is obtained by moving the movable mirror unit, acquiring the interferogram of measurement light. Reference light of a narrow wavelength band included in a wavelength band of the measurement light enters the fixed mirror and the movable mirror, forming interference light of the reference light. The movable mirror is moved to correct the interferogram of measurement light, which is at the same wavelength as the reference light in the measurement light, and the reference light, and a spectrum of the measurement light is acquired based on the corrected interferogram.
Abstract:
A mechanism that allows for precise motion of the optics of an interferometer is comprised by two or more diaphragm flexures having high lateral stiffness, creating a superior performing Michelson interferometer. When coupled with precise precision control of a mirror surface and a reference laser, the above creates a superior performing Fourier transform spectrometer.