Abstract:
An optical quadrature interferometer is presented. The optical quadrature interferometer uses a different state of polarization in each of two arms of the interferometer. A light beam is split into two beams by a beamsplitter, each beam directed to a respective arm of the interferometer. In one arm, the measurement arm, the light beam is directed through a linear polarizer and a quarter wave plate to produce circularly polarized light, and then to a target being measured. In the other arm, the to reference arm, the light beam is not subject to any change in polarization. After the light beams have traversed their respective arms, the light beams are combined by a recombining beamsplitter. As such, upon the beams of each arm being recombined, a polarizing element is used to separate the combined light beam into two separate fields which are in quadrature with each other. An image processing algorithm can then obtain the in-phase and quadrature components of the signal in order to construct an image of the target based on the magnitude and phase of the recombined light beam.
Abstract:
A non destructive method of spectroscopic ellipsometry adapted to measure the width of features in periodic structures, particularly those features which are less than one micron wide. The method is also adapted to make comparisons between a known reference structure and a sample structure, and to control the fabrication of periodic structures in a plasma etching reactor. Peaks in functions DELTA and PSI versus wavelength are monitored and correlated against reference curves, permitting etching conditions to be modified. This technique avoids the need for use of scanning electron microscopy to measure the linewidth, which is a destructive method. It also posses an advantage over scatterometry which requires several detectors arrayed at different angles from an incident beam to measure the different diffracted orders.
Abstract:
An ellipsometer system which includes a pivotal dispersive optics positioned to receive polychromatic light from an analyzer thereof, without further focusing after reflection from a substrate system, is presented. In addition, a stationary compensator, positioned between an analyzer and the dispersive optics, which serves to reduce detector element polarization dependent sensitivity to light entering thereto after it interacts with the dispersive optics, is disclosed. The use of a light fiber to carry light from a source thereof, to a polarization state generator, is also disclosed. The method of the present invention can include application of mathematical correction factors to, for instance, substrate system characterizing PSI and DELTA values, or Fourier ALPHA and BETA coefficients.
Abstract:
In a fluorescence spectrophotometer comprising a light source, an excitation monochromator, a sample cell, an emission monochromator, a photodetector and a signal processing device, an excitation light polarizer and an emission light polarizer are disposed in the excitation light path and the emission light path, respectively, and the excitation and emission light wavelengths of the two monochromators are changed simultaneously in accordance with each of a plurality of wavelength conditions, and in each of the wavelength conditions, the direction of polarization of the emission light polarizer is changed between two orthogonal directions, in each of which the output of the detector is sampled by the signal processor, and the processed data is stored so as to be used for calculation of the degree of polarization of the polarized fluorescent light from the sample.
Abstract:
A double polarized light beam spectrophotometer of a light-source modulation type. A modulated light beam emitted by a light source is conducted through specimen atom vapor generated by a graphite atomizer. Wavelength of light undergone atom absorption is selected and spatially separated into a pair of linearly polarized light beams perpendicular to each other. The pair of the linearly polarized light beams separated are alternately passed through a chopper and received by a photoelectric conversion device to be converted into electric signals which are utilized for determining atomic absorption of the specimen. The phase of modulation of light radiated from the light source is synchronized with phase of a current supplied to the graphite atomizer for heating thereof and the switching timing of the chopper.
Abstract:
An image processing system includes a processor configured to receive heat radiation from a scene by a spectropolarimetric imaging system adapted to generate a plurality of spectral frames, generate the plurality of spectral frames associated with the scene, each frame having a plurality of pixels, for each pixel from the generated plurality of spectral frames, extract scene associated spectral information, including pixel-specific temperature representing an object's temperature, and thermal texture factor representing the object's texture, for each of a plurality of materials having a specific emissivity in a library, generate reference spectral information as a function of temperature and thermal texture, match the extracted spectral information for each pixel from the generated plurality of spectral frames to the generated reference spectral information using a statistical method to minimize the associated variation, and extract spectral metadata from the matched reference spectral information for the associated material based on the match.
Abstract:
A light frequency standard for use as an optical clock is disclosed that is improved by optical pumping. Optical pumping is utilized to change the ground states of the atomic vapor from transition-forbidden to transition-allowed ground states involved in two-photon absorption process. Using an optical pump creates a stronger absorption line signal used for locking the laser to an absolute frequency. An optical spectrometer based upon two-photon absorption is disclosed that is improved by optical pumping, utilizing two optical pumps. The first optical pump provides photons that may combine with probe light for two-photon absorption, but it also depletes absorbing atoms that are in ground states. The second optical pump replenishes the supply of absorbing atoms into ground states allowing two-photon absorption between the first optical pump and the probe light. Two-photon absorption between the second pump light and the probe light is forbidden due to energy mismatch.
Abstract:
Methods and apparatus are presented for confocal microscopy using dispersed structured illumination. In certain embodiments the apparatus also comprises an optical coherence tomography (OCT) system, and OCT images acquired from two or more regions of a sample are registered using a corresponding set of two or more larger area images acquired with the confocal microscopy system. In preferred embodiments the apparatus is suitable for analysing the retina of an eye. The confocal microscopy system can be operated in a purely intensity mode or in a coherent mode. In other embodiments a confocal microscopy system using dispersed structured illumination is utilised for surface metrology.
Abstract:
A method of generating object surface texture in thermal infrared images is disclosed which includes receiving heat radiation from a scene by a spectropolarimetric imaging system, generating a plurality of spectral frames associated with the scene, each frame having a plurality of pixels, for each pixel from the generated plurality of spectral frames, extracting spectral information associated with the scene, including pixel-specific temperature representing an objects temperature, and thermal texture factor representing the objects texture, for each of a plurality of materials having a specific emissivity in a library, generating reference spectral information as a function of temperature and thermal texture, matching the extracted spectral information for each pixel from the generated plurality of spectral frames to the generated reference spectral information using a statistical method to minimize the associated variation, and extracting spectral metadata from the matched reference spectral information for the associated material based on the match.
Abstract:
This relates to systems and methods for measuring a concentration and type of substance in a sample at a sampling interface. The systems can include a light source, optics, one or more modulators, a reference, a detector, and a controller. The systems and methods disclosed can be capable of accounting for drift originating from the light source, one or more optics, and the detector by sharing one or more components between different measurement light paths. Additionally, the systems can be capable of differentiating between different types of drift and eliminating erroneous measurements due to stray light with the placement of one or more modulators between the light source and the sample or reference. Furthermore, the systems can be capable of detecting the substance along various locations and depths within the sample by mapping a detector pixel and a microoptics to the location and depth in the sample.