Abstract:
The present invention relates to a quartz glass blank for an optical component for transmitting radiation of a wavelength of 15 nm and shorter, the blank consisting of highly pure quartz glass, doped with titanium and/or fluorine, which is distinguished by an extremely high homogeneity. The homogeneity relates to the following features: a) micro-inhomogeneities caused by a local variance of the TiO2 distribution (
Abstract:
A mixed quartz powder contains quartz powder and two or more types of doping element in an amount of from 0.1 to 20 mass %. The aforementioned doped elements include a first dope element selected from the group consisting of N, C and F, and a second dope element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, the lanthanides and the actinides. The “quartz powder” is a powder of crystalline quartz or it is a powder of glassy SiO2 particles. It is made form natural occurring quartz or it is fabricated synthetically. The “quartz powder” may be doped. The compounding ratio of the total amount (M1) of the aforementioned first elements and the total amount (M2) of the aforementioned second elements as the ratio of the number of atoms (M1)/(M2) is preferably from 0.1 to 20. Al as well as the aforementioned doped elements is preferably included in a mixed quartz powder of this invention.
Abstract:
The present invention provides a TiO2—SiO2 glass whose coefficient of linear thermal expansion upon irradiation with high EUV energy light is substantially zero, which is suitable as an optical member of an exposure tool for EUVL. The present invention relates to a TiO2-containing silica glass having a halogen content of 100 ppm or more; a fictive temperature of 1,100° C. or lower; an average coefficient of linear thermal expansion in the range of from 20 to 100° C. of 30 ppb/° C. or lower; a temperature width ΔT, in which a coefficient of linear thermal expansion is 0±5 ppb/° C., of 5° C. or greater; and a temperature, at which a coefficient of linear thermal expansion is 0 ppb/° C., falling within the range of from 30 to 150° C.
Abstract:
An object of the present invention is to provide a TiO2-containing quartz glass substrate which, when used as a mold base for nanoimprint lithography, can form a concavity and convexity pattern having a dimensional variation falling within ±10%. The invention relates to a TiO2-containing quartz glass substrate: in which a coefficient of thermal expansion in the range of from 15 to 35° C. is within ±200 ppb/° C.; a TiO2 concentration is from 4 to 9 wt %; and a TiO2 concentration distribution, in a substrate surface on the side where a transfer pattern is to be formed, is within ±1 wt %.
Abstract translation:本发明的目的是提供一种含TiO 2的石英玻璃基板,其用作纳米压印光刻用的模具基底时,可以形成尺寸变化在±10%以内的凹凸图案。 本发明涉及一种含TiO 2的石英玻璃基板,其中15至35℃范围内的热膨胀系数在±200ppb /℃以内。 TiO 2浓度为4〜9重量%。 并且在要形成转印图案的一侧的基板表面中的TiO 2浓度分布在±1重量%以内。
Abstract:
What is disclosed includes OD-doped synthetic silica glass capable of being used in optical elements for use in lithography below about 300 nm. OD-doped synthetic silica glass was found to have significantly lower polarization-induced birefringence value than non-OD-doped silica glass with comparable concentration of OH. Also disclosed are processes for making OD-doped synthetic silica glasses, optical member comprising such glasses, and lithographic systems comprising such optical member. The glass is particularly suitable for immersion lithographic systems due to the exceptionally low polarization-induced birefringence values at about 193 nm.
Abstract:
An F-doped silica glass, a process for making the glass, an optical member comprising the glass, and an optical system comprising such optical member. The glass material comprises 0.1-5000 ppm by weight of fluorine. The glass material according to certain embodiments of the present invention has low polarization-induced birefringence, low LIWFD and low induced absorption at 193 nm.
Abstract:
The present invention provides a mask blank which comprises a substrate made of a synthetic quartz glass and a light-shielding film laminated on a surface of the substrate and is for use in a semiconductor device production technique employing an exposure light wavelength of 200 nm or shorter, wherein the mask blank has a birefringence, as measured at a wavelength of 193 nm, of 1 nm or less per substrate thickness. According to the present invention, mask blanks suitable for use in the immersion exposure technique and the polarized illumination technique are provided.
Abstract:
It is to provide a silica glass containing TiO2, having a wide temperature range wherein the coefficient of thermal expansion is substantially zero. A silica glass containing TiO2, which has a TiO2 concentration of from 3 to 10 mass %, a OH group concentration of at most 600 mass ppm and a Ti3+ concentration of at most 70 mass ppm, characterized by having a fictive temperature of at most 1,200° C., a coefficient of thermal expansion from 0 to 100° C. of 0±150 ppb/° C., and an internal transmittance T400-700 per 1 mm thickness in a wavelength range of from 400 to 700 nm of at least 80%. A process for producing a silica glass containing TiO2, which comprises porous glass body formation step, F-doping step, oxygen treatment step, densification step and vitrification step.
Abstract:
The present invention provides an optical synthetic quartz glass material which substantially does not cause changes in transmitted wave surface (TWS) by solarization, compaction (TWS delayed), rarefaction (TWS progressed) and photorefractive effect when ArF excimer laser irradiation is applied at a low energy density, e.g. at energy density per pulse of 0.3 mJ/cm2 or less. The present invention further provides a method for manufacturing the same. In order to solve the above-mentioned problems, the optical synthetic quartz glass material of the present invention is characterized in that, in a synthetic quartz glass prepared by a flame hydrolysis method using a silicon compound as a material, the followings are satisfied that the amount of SiOH is within a range of more than 10 ppm by weight to 400 ppm by weight, content of fluorine is 30 to 1000 ppm by weight, content of hydrogen is 0.1×1017 to 10×1017 molecules/cm3 and, when the amounts of SiOH and fluorine are A and B, respectively, total amount of A and B is 100 ppm by weight or more and B/A is 0.25 to 25.
Abstract translation:本发明提供了一种光学合成石英玻璃材料,其在低温下施加ArF准分子激光照射时,通过太阳化,压实(TWS延迟),稀释(TWS进行)和光折射效应基本上不会引起透射波面(TWS)的变化 能量密度,例如 每个脉冲的能量密度为0.3mJ / cm 2以下。 本发明还提供一种制造该方法的方法。 为了解决上述问题,本发明的光学合成石英玻璃材料的特征在于,在使用硅化合物作为材料的火焰水解法制备的合成石英玻璃中,满足以下条件: SiOH的量在大于10重量ppm至400重量ppm的范围内,氟含量为30至1000重量ppm,氢含量为0.1×10 17至10 10 17分子/ cm 3,当SiOH和氟的量分别为A和B时,A和B的总量为100重量ppm以上,B / A为 0.25至25。
Abstract:
Synthetic quartz glass is produced by feeding a silica-forming raw material gas, hydrogen gas, oxygen gas and a fluorine compound gas from a burner to a reaction zone, flame hydrolyzing the silica-forming raw material gas in the reaction zone to form fine particles of fluorine-containing silica, depositing the silica fine particles on a rotatable substrate in the reaction zone so as to create a fluorine-containing porous silica matrix, and heat vitrifying the porous silica matrix in a fluorine compound gas-containing atmosphere. This process enables the low-cost manufacture of a synthetic quartz glass having a higher and more uniform transmittance to light in the vacuum ultraviolet region than has hitherto been achieved.