Abstract:
A polarization image sensor includes: photodiodes arranged on an image capturing plane; a color mosaic filter in which color filters in multiple different colors are arranged to face the photodiodes; an optical low-pass filter which covers the color mosaic filter; and polarization optical elements located closer to a light source than the optical low-pass filter is. Each polarization optical element covers an associated one of the photodiodes and makes light which is polarized in a predetermined direction in a plane that is parallel to the image capturing plane incident onto the optical low-pass filter. The color filters are arranged so that light that has passed through polarization optical elements is transmitted through an associated one of the color filters in a single color. Each color filter covers multiple photodiodes.
Abstract:
A system and method for providing an instrument response correction. A sample is illuminated to generate a first plurality and a second plurality of interacted photons. The first plurality of interacted photons may be detected by a dispersive spectrometer to generate a reference spectrum representative of the sample. The second plurality of interacted photons may be passed through a tunable filter and detected using an imaging detector to generate at least one hyperspectral image. This hyperspectral image may comprise a Raman hyperspectral image or an infrared hyperspectral image. A system may comprise an illumination source, a collection optics, a dispersive spectrometer, a fiber optic, a tunable filter, and an imaging detector.
Abstract:
A method for measuring the uranium concentration of an aqueous solution including the following successive steps: a) electrochemical reduction towards valence IV, of the uranium present in the aqueous solution with a valence greater than IV, this reduction being implemented at pH
Abstract:
An apparatus for measuring fluorescence of potable liquids contained within an optical quartz cell includes a deep UV laser or a compact UV LED that generates a light beam. A UV blocking and visible light transmitting optical filter reduces out-of-band emission from the LED. The optical quartz cell is between a pair of plane mirrors so that light from the light source travels through it several times. A concave mirror collects a fluorescence signal and has a common optical axis with a lens. The common optical axis is normal to an optical axis of the light beam. The concave mirror and lenses are positioned on opposite sides of the optical quartz cell. A fluorescence detector is in optical alignment with the concave mirror and the lens. A boxcar averager is in electrical communication with the fluorescence detector. Optical wavelength selection of the fluorescence emission uses optical filters or a spectrometer.
Abstract:
The present disclosure provides for a correction filter that may be configured to comprise a predetermined arrangement of thin film layers. This arrangement of thin film layers may be such that it effectively enables a correction filter to generate a predetermined spectral response, wherein said predetermined spectral response is substantially the same as a determined instrument response correction associated with an instrument. The invention of the present disclosure therefore provides for effectively compensating for transmission inefficiencies associated with an instrument without the need for separate reference measurements to determine and correct for instrument response.
Abstract:
Color measuring systems and methods are disclosed. Perimeter receiver fiber optics are spaced apart from a central source fiber optic and receive light reflected from the surface of the object being measured. Light from the perimeter fiber optics pass to a variety of filters. The system utilizes the perimeter receiver fiber optics to determine information regarding the height and angle of the probe with respect to the object being measured. Under processor control, the color measurement may be made at a predetermined height and angle. Various color spectral photometer arrangements are disclosed. Translucency, fluorescence and/or surface texture data also may be obtained. Audio feedback may be provided to guide operator use of the system. The probe may have a removable or shielded tip for contamination prevention.
Abstract:
The invention relates to a field-compensated interferometer (1) including an optical assembly (2) for directing incident light beams (4) having a field angle θ relative to an optical axis of the interferometer (1), into arms (5, 6) of the interferometer, and a beam splitter (12), the arms (5, 6) including at least one mechanically movable optical device (15, 16) for generating a variable optical path difference between beams generated by the separation of each incident beam (4) using said beam splitter (12), said interferometer (1) being characterized in that it includes at least one field compensation optical element (E) arranged in one or the other of the image focal planes of the optical assembly (2), said image focal planes being combined relative to the beam splitter (12), said element (E) including at least one surface (9) that is curved so as to generate a path difference between the incident beams having a non-zero field angle and the incident beams having a zero field angle, the generated path difference making it possible to compensate for the self-apodization resulting from the field angle.
Abstract:
A spectral module 1 comprises a substrate 2 for transmitting light L1 incident thereon from a front face 2a, a lens unit 3 for transmitting the light L1 incident on the substrate 2, a spectroscopic unit 4 for reflecting and spectrally resolving the light L1 incident on the lens unit 3, and a photodetector 5 for detecting light L2 reflected by the spectroscopic unit 4. The substrate 2 is provided with a recess 19 having a predetermined positional relationship with alignment marks 12a, 12b and the like serving as a reference unit for positioning the photodetector 5, while the lens unit 3 is mated with the recess 19. The spectral module 1 achieves passive alignment between the spectroscopic unit 4 and photodetector 5 when the lens unit 3 is simply mated with the recess 19.
Abstract:
A method of Raman detection for a portable, integrated spectrometer instrument includes directing Raman scattered photons by a sample to an avalanche photodiode (APD), the APD configured to generate an output signal responsive to the intensity of the Raman scattered photons incident thereon. The output signal of the APD is amplified and passed through a discriminator so as to reject at least one or more of amplifier noise and dark noise. A number of discrete output pulses within a set operational range of the discriminator is counted so as to determine a number of photons detected by the APD.
Abstract:
A composition of resonant passive metal-dielectric elements with gain medium results in a meta-material with an effective negative refractive index and compensated losses. To compensate for losses, additional energy is supplied using the stimulated emission from active elements made of a gain material. The overall objective is to overcome the fundamental threshold in resolution for conventional optical imaging limited to about a half-wavelength of incident light. The negative index material with compensated losses (NIMCOL) can be used in NIM-based optical imaging and sensing devices with enhanced sub-wavelength resolution. A lasing device based on overcompensating for the loss in NIM structures is disclosed as well.