Abstract:
In an optical property measuring method and an optical property measuring apparatus, a spectral transmittance characteristic of a reference colored layer prepared as a reference is corrected based on a measured spectral reflection characteristic of a colored layer, and the spectral reflection characteristic of the reference colored layer. With this arrangement, information on the measured spectral transmittance characteristic of the colored layer can be obtained with sufficient precision in conformity with a printing condition of a sample to be measured. Thus, colorimetry of a printed color of a fluorescent sample i.e. a colored surface on a fluorescent substrate can be accurately performed by using the corrected spectral transmittance characteristic of the reference colored layer.
Abstract:
A measurement system that has multiple sensors or multiple light sources is disclosed. The measurement system comprising a light source directed along a first axis and configured to illuminate a sample volume. The measurement system has a first sensor aligned along a second axis and is configured to detect scattered light in the sample volume. The measurement system has a second sensor aligned along a third axis and is also configured to detect scattered light in the sample volume.
Abstract:
In one embodiment, the present invention is a method and apparatus for cleaning an integrating sphere, such as an integrating sphere used in an integrating sphere spectrophotometer. One embodiment of a spectrophotometer includes an integrating sphere having a reflective interior surface, a primary light source configured to illuminate the interior surface when enabled, and a secondary light source configured to emit ionizing radiation onto the interior surface.
Abstract:
In an optical property measuring method and an optical property measuring apparatus, a spectral transmittance characteristic of a reference colored layer prepared as a reference is corrected based on a measured spectral reflection characteristic of a colored layer, and the spectral reflection characteristic of the reference colored layer. With this arrangement, information on the measured spectral transmittance characteristic of the colored layer can be obtained with sufficient precision in conformity with a printing condition of a sample to be measured. Thus, colorimetry of a printed color of a fluorescent sample i.e. a colored surface on a fluorescent substrate can be accurately performed by using the corrected spectral transmittance characteristic of the reference colored layer.
Abstract:
A non-reciprocal nephelometer is disclosed herein that uses an integrating sphere with attached truncation-reduction tubes to contain the sample volume and to integrate the scattered light. The disclosed nephelometer improves on the imperfect angular response by using an integrating sphere design with forward (backward) truncation angles of ≈1° (≈179°), it reduces sampling losses by employing a substantially straight vertical flow path. In one disclosed embodiment, an illumination assembly consisting of one or multiple diffuse light sources is provided for homogenously illuminating the integrating sphere. An illumination aperture admits light from the light sources, a sensing aperture admits scattered light to an optical detector, and a dark aperture provides a dark background viewing area for the optical detector.
Abstract:
In one embodiment, a surface analyzer system comprises a radiation targeting assembly to target a radiation beam onto a surface; and a reflected radiation collecting assembly that collects radiation reflected from the surface, wherein the reflected radiation collecting assembly comprises a mirror to collect radiation reflected from the surface.
Abstract:
In one embodiment, a surface analyzer system comprises a radiation targeting assembly to target a radiation beam onto a surface; and a reflected radiation collecting assembly that collects radiation reflected from the surface, wherein the reflected radiation collecting assembly comprises a mirror to collect radiation reflected from the surface.
Abstract:
A method of verifying the color and tinting strength of a manufactured batch of a semi-transparent wood stain. In accordance with the method, a standard batch of the wood stain is formed and then mixed with a specified amount of a white colorant to form a standard measurement batch. A test sample of the manufactured batch is obtained and is also mixed with a specified amount of the white colorant to form a test measurement sample. Layers of the standard measurement batch and the test measurement sample are formed on the substrates and complete hide obtained. Reflectance measurements of the layers are made using a spectrophotometer. The reflectance measurements are used to determine if the color and the tinting strength of the manufactured batch is within an acceptable deviation range of the color and tinting strength of the standard batch. This allows for objective color difference and tint strength difference calculations, and adjustments can be made therefrom, therefore eliminating the past visual trial and error methods.
Abstract:
A curved mirrored surface is used to collect radiation scattered by a sample surface and originating from a normal illumination beam and an oblique illumination beam. The collected radiation is focused to a detector. Scattered radiation originating from the normal and oblique illumination beams may be distinguished by employing radiation at two different wavelengths, by intentionally introducing an offset between the spots illuminated by the two beams or by switching the normal and oblique illumination beams on and off alternately. Beam position error caused by change in sample height may be corrected by detecting specular reflection of an oblique illumination beam and changing the direction of illumination in response thereto. Butterfly-shaped spatial filters may be used in conjunction with curved mirror radiation collectors to restrict detection to certain azimuthal angles.
Abstract:
A spectrophotometric system includes a zoom lens assembly that is mounted for axial translation relative to an integrating sphere. The zoom lens assembly includes first and second focusing lens mounted to an axially movable lens carrier. The lens carrier is positioned intermediate first and second sets of mirrors for reflecting/directing SCE and SCI beams toward fiber ports. A reference beam is also emitted from the integrating sphere and transmitted to a processor, thereby resulting in simultaneous tri-beam measurements. The disclosed spectrophotometric systems may also include an aperture plate detection assembly and/or a sample holder assembly that incorporates a dampening gas spring. The aperture plate detection system includes a detection disk that may include a plurality of pre-positioned sensors that interact with an activating ridge formed on the aperture plate for identification thereof.