Abstract:
Method of measuring extent of cure of a coating comprising operating a metal-containing substrate coating operation to provide a coated metal-containing substrate; positioning an investigative apparatus near the coated metal-containing substrate; and operating the investigative apparatus to obtain an extent of cure reading, the reading corresponding to an area on the coated metal-containing substrate.
Abstract:
A spectral reflectance sensor including: a light source for emitting a modulated beam of red light; a light source for emitting a modulated beam of near infrared light; a receiver for receiving reflected light produced by either the red source or the near infrared source; a receiver for receiving incident light from either the red source or the infrared source; a signal conditioner responsive to the modulation such that the signals produced by the receivers in response to reflected and incident light from the source can be discriminated from signals produced by ambient light; and a microprocessor having an input such that the microprocessor can determine the intensities of incident red light, reflected red light; incident near infrared light; and reflected near infrared light. From these intensities, and by knowing the growing days since emergence or planting, the sensor can calculate the mid-growing season nitrogen fertilizer requirements of a plant.
Abstract:
The measuring apparatus of the present invention measures the optical properties of a sample containing a fluorescent material by irradiating the sample with light containing a UV component. In the present invention are provided a first light source for irradiating the sample with light containing a UV component, a second light source for irradiating the sample with light which does not contain a UV component, light receiving element for receiving light reflected from the sample irradiated by said light sources, and output means for generating weighting coefficients for weighting the output of the light receiving element during emission by each light source. The optical properties of the sample is calculated based on the output of the light receiving element for a first light source, output of the light receiving element for a second light source, and the respective weighting coefficients. Accordingly, measurement values can be obtained which are equal to values when measurement is accomplished with a standard light source.
Abstract:
A method and means for generating synthetic spectra allowing quantitative measurement utilizes dual chip alternatively energized IREDs with optical bandpass filter(s) passing two optical bands which is be combined with curvilinear interpolation to be utilized in a low cost small size quantitative measuring instrument.
Abstract:
A monochromator utilizing a single light source productive of a uniformly intense, single beam, single wavelength coaxial beam output or alternatively, a single beam selected dual wavelength coaxial beam output.
Abstract:
Apparatus for detecting the presence of an ink on a substrate comprises a number of LEDs (1) for irradiating the substrate (2) with radiation at at least two different wavelengths, at least one of the wavelengths being chosen to correspond to an absorption or relectance wavelength of the ink to be detected. A sequence generator (5) modulates the radiation at each wavelength in a respective, different manner. A radiation sensor (3) senses radiation emitted by the substrate (2). A correlator (7,8) correlates samples of the sensed radiation from the radiation sensor (3) with signals each of which is modulated by a respective one of the modulations applied to the radiation, to generate correlation signals. A monitor (9) monitors the correlation signals in order to detect the presence of the said ink.
Abstract:
An analyzing apparatus provided with a spectroscopic photometer, in which light emitted by a deuterium lamp enters a flow cell; light transmitted by the flow cell is divided into two light beams by means of a beam splitter, one of which is received by a detecting element for sample measurement and the other of which is received by a detecting element for monitoring through a filter transmitting only light in a predetermined wavelength region, which is not essentially absorbed by the sample; and a signal processing device compares the output signal of the detecting element for sample measurement with that of the detecting element for monitoring and effects necessary operations.
Abstract:
A flame detector, in which the generation of a flame is detected by detecting the level of radiant rays at the wavelength characteristic of flame, of infrared rays radiated from the objects generating the flame and in a valley between both of the wavelengths by means of infrared detectors and judging from the comparison of the outputs of the detectors, whether or not there is a valley in the spectrum.The construction of a flame detector according to the present invention can surely detect flame merely by comparing three quantities of radiant rays at three wavelengths without false alarms and accordingly, an element for setting a standard value is not required. This results in a flame detector having a remarkably simple construction.
Abstract:
A monochromator for the simultaneous selection and utilization of two wavelengths of small and constant band width, whereby the wavelengths may be selected and rapidly changed as desired. The monochromator is particularly suitable for the simultaneous scanning of a chromatogram (e.g. a thin-layer chromatogram) with two wavelengths to determine the concentration of a certain material independently of disturbing influences of the matrix. This is done by photosensors which are adapted to be led on pivot arms on a circular arc about the element dispersing the light.
Abstract:
A method and apparatus for analyzing visible reflectance data of a granular crystalline powder sample in a solid state relative to reflectance data for a reference specimen, by minimizing the effects of the powder particle size on the measurement of the sample optical properties comprising, an optical assembly for deriving sample reference reflectance data, effecting standardization of the sample reflectance data relative to the reference reflectance data by a ratio comparison, and processing the standardized signals effected to establish an output indicator signal representative of the sample optical properties for ascertaining the degrees of presence/absence of the optical quality to be measured.