Abstract:
A system of pointillist painting comprises an automated 3-D positioning system disposed proximate a painting surface, a colorant dispenser coupled to the gantry structure and having a dispensing tip in fluid communication with a colorant chamber, the gantry structure operable to move the colorant dispensing tip to a specified position of the painting surface, where the colorant dispenser is operable to apply a specified amount of a colorant to the painting surface and creating a dot having a two-dimensional coverage and three-dimensional profile at the specified position.
Abstract:
Disclosed is a composition for ferroelectric thin film formation which is used in the formation of a ferroelectric thin film of one material selected from the group consisting of PLZT, PZT, and PT. The composition for ferroelectric thin film formation is a liquid composition for the formation of a thin film of a mixed composite metal oxide formed of a mixture of a composite metal oxide (A) represented by general formula (1): (PbxLay)(ZrzTi(1−z))O3 [wherein 0.9
Abstract translation:公开了用于形成选自PLZT,PZT和PT的一种材料的铁电薄膜的铁电薄膜形成用组合物。 铁电薄膜形成用组合物是由通式(1)表示的复合金属氧化物(A):(PbxLay)(ZrzTi(Zr x Ti y))的混合物形成的混合复合金属氧化物的薄膜的液体组合物, (B)或由通式(2)表示的羧酸(B),其中0.9
Abstract:
After a development liquid on a substrate is washed away with a rinse liquid, the rotational speed of the substrate is reduced, so that a liquid layer of the rinse liquid is formed over a top surface of the substrate. Thereafter, the rotational speed of the substrate is increased. The increase in the rotational speed of the substrate causes a centrifugal force to be slightly greater than tension, thereby causing the liquid layer to be held on the substrate with the thickness thereof in its peripheral portion increased and the thickness thereof at the center thereof decreased. Then, gas is discharged toward the center of the liquid layer from a gas supply nozzle, so that a hole is formed at the center of the liquid layer. This causes tension that is balanced with a centrifugal force exerted on the peripheral portion of the liquid layer to disappear. Furthermore, the rotational speed of the substrate is further increased while the gas is discharged. Thus, the liquid layer moves outward from the substrate.
Abstract:
The invention relates to a method for coating a metal strip with a coating containing a solvent and for drying and/or cross-linking said coating. Accordingly, the metal strip is provided with the coating in an inner chamber of a coating device. The coated metal strip is conducted through a drying unit and in an inner chamber of the latter is exposed to a form of energy by at least one radiation source that is cooled by a cooling gas, said form of energy being converted to heat in the coating and/or the metal strip. The cooling gas that is supplied to the radiation source flows through the latter, absorbs the waste heat from said source and is then conducted into the inner chamber of the drying unit, thus saving energy and gas. The invention also relates to an installation that is suitable for carrying out said method.
Abstract:
A stent with at least one severable supporting device and methods of coating using the same are disclosed. The severable supporting device can be an end tube or a tab attached to some portion of the stent by at least one “gate” or attachment. The end tube or tab may be part of the design of the stent when it is originally manufactured, or it may be attached to the stent in a secondary process by a biocompatible glue or solder. The end tube or tab can be used to support a stent during a coating process eliminating the need for a mandrel which would otherwise contact the stent during the coating process.
Abstract:
A composition and method for coating a zinc-containing substrate. The composition and method provide a film that is chemically grafted onto the zinc-containing substrate, that is anticorrosive and abrasion resistant, and can be applied as a clear film and is capable of providing an appearance that can mimic various finishes such as chrome, gold, brass, satin chrome, and the like.
Abstract:
In this disclosure, air flow is formed above chemical liquid film and a move of the chemical liquid is generated by making the air flow into a contact with the surface of chemical liquid. Further, a negative pressure is generated in a space between a processing object substrate and a plate by rotating the plate. Consequently, uniformity of processing of chemical liquid is improved, so that liquid removing step can be carried out effectively. As a result, yield rate of chemical liquid treatment can be improved.
Abstract:
Disclosed is a method for producing an information-recording medium comprising, on a substrate, a dye recording layer capable of recording information, the method comprising the step of drying the substrate formed with the dye recording layer by allowing clean air to flow while rotating the substrate at a high speed; wherein an intake for introducing the clean air is narrowed by arranging a lid having a circular opening at a central portion, at an opening disposed at an upper portion of an apparatus for rotating the substrate at the high speed.
Abstract:
A process for applying a thermoplastic coating to a substrate wherein the gases and other volatiles in a boundary layer between the substrate and the coating are evacuated using a high volume, high velocity air stream which traverses the surface of the substrate to be coated (functioning as an air knife) such that, when the coating is applied, gases/volatiles do not disrupt the coating while:the coating cools and solidifies. The effect of the air knife may be enhanced by heating the substrate and/or by applying a solvent to the substrate. The air knife also cools down the boundary layer of the substrate so that, as the thermoplastic coating is applied, this cooled-down and gas-evacuated boundary layer provides a measure of insulation between the coating and any gases/volatiles which have not been evacuated from the substrate.
Abstract:
Disclosed is a film-forming method, comprising dispensing from a dispenser nozzle a coating solution, which is prepared by adding a solid component to a solvent and controlled to be spread on the substrate in a predetermined range, onto a target substrate to be processed while relatively moving the dispenser nozzle and the target substrate so as to form a liquid film on the entire surface of the target substrate, and arranging a sucking nozzle above and apart from the target substrate such that the sucking nozzle is not in contact with the surface of the liquid film so as to permit the sucking nozzle to suck the solvent vapor right under the sucking nozzle while moving the sucking nozzle relative to the target substrate, thereby removing the solvent from the liquid film and, thus, forming a coated film.