Abstract:
A spectral module 1 comprises a substrate 2 for transmitting light L1 incident thereon from a front face 2a, a lens unit 3 for transmitting the light L1 incident on the substrate 2, a spectroscopic unit 4 for reflecting and spectrally resolving the light L1 incident on the lens unit 3, and a photodetector 5 for detecting light L2 reflected by the spectroscopic unit 4. The substrate 2 is provided with a recess 19 having a predetermined positional relationship with alignment marks 12a, 12b and the like serving as a reference unit for positioning the photodetector 5, while the lens unit 3 is mated with the recess 19. The spectral module 1 achieves passive alignment between the spectroscopic unit 4 and photodetector 5 when the lens unit 3 is simply mated with the recess 19.
Abstract:
In a spectral module 1, a photodetector 5 is mounted to an intermediate substrate 81, whereby an optical resin agent 63 interposed between a front face 2a of a substrate 2 and the intermediate substrate 81 is prevented from intruding into a light transmitting hole 50 of the photodetector 5. This can prevent refraction, scattering, and the like from occurring and make light Li appropriately enter a spectroscopic unit 4. In addition, the intermediate substrate 81 has a volume smaller than that of the substrate 2, whereby the intermediate substrate 81 expands/shrinks in a state more similar to the photodetector 5 than the substrate 2 when the temperature in the surroundings of the spectral module 1 changes. Hence, bump connections of the photodetector 5 can more reliably be prevented from breaking upon changes in the temperature in the surroundings of the spectral module 1 than when the photodetector 5 is mounted to the substrate 2.
Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a lisht detecting element 4 having a lisht detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of the lisht detecting element 4 to transmit the light L1, L2. The lisht detecting element 4 is provided with a light-passing hole 42 through which the light L1 advancing into the spectroscopic portion 3 passes, and a raised portion 43 in a rectangular annular shape is formed on a rear plane 4a of the body portion 2 side in the lisht detecting element 4 so as to enclose a light outgoing opening 42b of the light-passing hole 42.
Abstract:
The spectroscopy module 1 is provided with a body portion 2 for transmitting light L1, L2, a spectroscopic portion 3 for dispersing light L1 made incident from the front plane 2a of the body portion 2 into the body portion 2 to reflect the light on the front plane 2a, a light detecting element 4 having a light detecting portion 41 for detecting the light L2 dispersed and reflected by the spectroscopic portion 3 and electrically connected to a wiring 9 formed on the front plane 2a of the body portion 2 by face-down bonding, and an underfill material 12 filled in the body portion 2 side of the light detecting element 4 to transmit the light L1, L2. The light detecting element 4 is provided with a light-passing hole 42 through which the light L1 advancing into the spectroscopic portion 3 passes, and a reservoir portion 43 is formed on a rear plane 4a of the body portion 2 side in the light detecting element 4 so as to enclose a light outgoing opening 42b of the light-passing hole 42.
Abstract:
The present subject matter relates to methods of high-speed analysis of product samples. Light is directed to a portion of a product under analysis and reflected from or transmitted through the product toward an optical detector. Signals for the detector are compared with reference signals based on a portion of the illuminating light passing through a reference element to determine characteristics of the product under analysis. The products under analysis may be stationary, moved by an inspection point by conveyor or other means, or may be contained within a container, the container including a window portion through which the product illuminating light may pass.
Abstract:
A method for providing data useful in procedures associated with the oral cavity, in which at least one numerical entity representative of the three-dimensional surface geometry and color of at least part of the intra-oral cavity is provided and then manipulated to provide desired data therefrom.
Abstract:
In a spectroscopy module 1, a light passing hole 50 through which a light L1 advancing to a spectroscopic portion 4 passes is formed in a light detecting element 5. Therefore, it is possible to prevent the relative positional relationship between the light passing hole 50 and a light detecting portion 5a of the light detecting element 5 from deviating. Moreover, the light detecting element 5 is bonded to a front plane 2a of a substrate 2 with an optical resin adhesive 63. Thus, it is possible to reduce a stress generated onto the light detecting element 5 due to a thermal expansion difference between the light detecting element 5 and the substrate 2. Additionally, on the light detecting element 5, a first convex portion 101 is formed so as to be located at least between the light detecting portion 5a and the light passing hole 50 when viewed from a direction substantially perpendicular to the front plane 2a. Thus, when the light detecting element 5 is attached to the substrate 2 via the optical resin adhesive 63, the optical resin adhesive 63 is dammed at the first convex portion 101. Thus, the optical resin adhesive 63 is prevented from penetrating into the light passing hole 50.
Abstract:
A rotating compensator spectroscopic ellipsometer or polarimeter system having a source of a polychromatic beam of electromagnetic radiation, a polarizer, a stage for supporting a material system, an analyzer, a dispersive optics and a detector system which comprises a multiplicity of detector elements, the system being functionally present in an environmental control chamber and therefore suitable for application in wide spectral range, (for example, 130-1700 nm). Preferred compensator design involves a substantially achromatic multiple element compensator systems wherein multiple total internal reflections enter retardance into an entered beam of electromagnetic radiation, and the elements thereof are oriented to minimize changes in the net retardance vs. the input beam angle resulting from changes in the position and/or rotation of the system of elements.
Abstract:
A spectrophotometric optical system of a microplate reader and a filter wheel thereof are disclosed. The filter wheel comprises a pivotable wheel body, at least one narrow-band filter with a relatively long central wavelength mounted to the wheel body, and at least one narrow-band filter with a relatively short central wavelength mounted to the wheel body. The narrow-band filter with a relatively long central wavelength is provided with a diaphragm on a front surface thereof The diaphragm is formed with a plurality of apertures. By the diaphragm attached to the front surface of the narrow-band filter with a relatively long central wavelength, an energy matching between light of longer wavelength and light of shorter wavelength may be achieved. Further, due to the uniformly distributed apertures in the diaphragm, an even light spot may be obtained.
Abstract:
Low aberration relay systems modified to perform as spatial filters in reflectometer, spectrophotometer, ellipsometer, polarimeter and the like systems.