Abstract:
There is provided is a spectrometer having a concave reflection type diffraction element, wherein, among surfaces other than a diffraction surface of the diffraction element, non-diffraction surfaces which are located outside the diffraction surface at the same side as the diffraction surface are a glossy surface, the spectrometer includes a light detection unit which is located at an imaging position of a first-order diffracted light diffracted by the diffraction element to receive the first-order diffracted light, and the light detection unit is disposed inside optical paths of light beams regularly reflected on the non-diffraction surfaces outside the diffraction surface. Accordingly, it is possible to effectively suppress a stray light reflected on the surfaces other the diffraction surface from being incident into the light detection unit and to detect the light spectrally diffracted by the diffraction surface at high accuracy.
Abstract:
According to one aspect, an IR spectrometer includes a light source adapted to illuminate a sample, a grating adapted to spectrally disperse a light that has illuminated the sample, a MEMS array adapted to be electrostatically actuated by a controller to control a diffraction of the light, a detector configured to detect the light, and a power source adapted to supply power to the light source and to the MEMS array, wherein the controller is adapted to control the MEMS array so as to manage a power consumption of the IR spectrometer. In one embodiment, the IR spectrometer includes a housing sized and arranged to house the light source, the grating, the MEMS array, the controller, the detector, to and the power source in a hand-held device.
Abstract:
A zoned order sorting filter for a spectrometer in a semiconductor metrology system is disclosed with reduced light dispersion at the zone joints. The order sorting filter comprises optically-transparent layers deposited underneath, or on top of thin-film filter stacks of the order sorting filter zones, wherein the thicknesses of the optically-transparent layers are adjusted such that the total optical lengths traversed by light at a zone joint are substantially equal in zones adjacent the zone joint. A method for wavelength to detector array pixel location calibration of spectrometers is also disclosed, capable of accurately representing the highly localized nonlinearities of the calibration curve in the vicinity of zone joints of an order sorting filter.
Abstract:
For angular resolved spectrometry a radiation beam is used having an illumination profile having four quadrants is used. The first and third quadrants are illuminated whereas the second and fourth quadrants aren't illuminated. The resulting pupil plane is thus also divided into four quadrants with only the zeroth order diffraction pattern appearing in the first and third quadrants and only the first order diffraction pattern appearing in the second and third quadrants.
Abstract:
Computed tomography imaging spectrometers (“CTIS”s) having patterns for imposing spatial structure are provided. The pattern may be imposed either directly on the object scene being imaged or at the field stop aperture. The use of the pattern improves the accuracy of the captured spatial and spectral information.
Abstract:
The invention relates to a spectrometer for analysing the optical emission of a sample, having an excitation source, an entrance gap and a dispersive element, which fans out the spectrum of the light generated in the excitation source in a plane, and having solid body sensors with one or more lines, which are arranged in the region of the focal curve of the beam path in order to evaluate the spectral information, wherein the sensors are arranged above or below the plane and the spectral emission is deflected onto the sensors by mirrors and focused, wherein the reflecting surface of the mirrors is aspherically formed in a direction of curvature.
Abstract:
Systems and methods are disclosed for a modified Sagnac interferometer having a plurality of gratings that can be reflective or transmissive. The gratings allow measurement of wavelength spectra in counter-circulating beams of the interferometer. In one embodiment, diffraction geometries at each pair of neighboring gratings are configured so that diffractive and angular contributions reinforce each other at the second of the pair of gratings. In one embodiment, diffraction geometries at the gratings are configured so that the exiting beams of the interferometer satisfy the crossing condition wherein the exiting beams are on the opposite sides of a reference beam axis for a design wavelength input beam. Also disclosed are techniques for restoring the reinforcement and/or crossing conditions when these conditions are not otherwise met.
Abstract:
A transmissive diffraction grating includes a substrate and a plurality of ridges provided in a mutually parallel manner at constant periodicity p on the substrate. The ridges include a first layer, a second layer (refractive index n2: 2.0-2.5), and a third layer with non-continuous refractive indices, arranged in that order from the substrate outward. The first layer adjacent the substrate, in terms of its refractive index, exhibits a difference of 0.1 or less relative to the substrate. The second layer has a higher refractive index than the first layer and third layer and satisfies the following conditions. For a single ridge, the cross-sectional area S of a cross-section of the second layer perpendicular to the longitudinal direction of said ridge is in the range of 0.75p2k1θ2/(n2−1)
Abstract:
A spectroscope of the present invention includes a concave diffraction grating which disperses incident light, an incident light introduction unit which introduces incident light into the concave diffraction grating, and an outgoing light receiving unit which receives outgoing light dispersed for different wavelengths by the concave diffraction grating. The spectroscope further includes an incident aperture which limits an incident angle of light emitted by the incident light introduction unit to the concave diffraction grating, and an outgoing aperture which limits an outgoing angle of outgoing light dispersed for different wavelengths by the concave diffraction grating to the light receiving unit. The spectroscope is constructed so that relatively rotational transfer of at least two out of the concave diffraction grating, the incident aperture and the outgoing apertures can be performed along a Rowland circle which the concave diffraction grating forms.
Abstract:
An optical characterisation system is described for characterising optical material. The system typically comprises a diffractive element (104), a detector (106) and an optical element (102). The optical element (102) thereby typically is adapted for receiving an illumination beam, which may be an illumination response of the material. The optical element (102) typically has a refractive surface for refractively collimating the illumination beam on the diffractive element (104) and a reflective surface for reflecting the diffracted illumination beam on the detector (106). The optical element (102) furthermore is adapted for cooperating with the diffractive element (104) and the detector (106) being positioned at a same side of the optical element (102) opposite to the receiving side for receiving the illumination beam.