Abstract:
According to various aspects, exemplary embodiments are disclosed of shielding structures including one or more frequency selective surfaces, which may be used for attenuating, reflecting, and/or redirecting electromagnetic signals through open structures. Also disclosed are methods of using one or more frequency selective surfaces for attenuating, reflecting, and/or redirecting electromagnetic signals through open structures.
Abstract:
A circuit housing having a printed circuit board and a circuit and holes in which peg-like positioning elements projecting away from the housing engage for positioning the PCB relative to the housing, at least one positioning element projecting without play into one circular hole, another positioning element, accommodated in another hole, having spreading fingers separated from one another by at least one recess, projecting into/through the further hole, elastically transverse to the direction of an imaginary connecting line of the holes and a cross-section such that a) in the direction of the imaginary connecting line, there is play between the spreading fingers and a radially inner circumferential surface of the another hole on both sides, but b) the spreading fingers make contact by their diametrically opposite side faces with the inner face of the another hole perpendicular to the connecting line without play only along a contact line/point.
Abstract:
An apparatus includes a memory module connector assembly physically secured along an edge of a printed circuit board. The printed circuit board includes a first plurality of contacts on a first surface of the printed circuit board and a second plurality of contacts on a second surface of the printed circuit board. The memory module connector assembly includes a first edge connector socket for receiving a first memory module, a second edge connector socket for receiving a second memory module, a first plurality of electrical leads electrically connecting contacts within the first edge connector socket to the first plurality of contacts on the first side of the printed circuit board, and a second plurality of electrical leads electrically connecting contacts within the second edge connector socket to the second plurality of contacts on the second side of the printed circuit board.
Abstract:
A printed circuit board (100) has a conductor layer (ground layer (70)), a signal layer (25) having a signal line (20) provided so as to oppose the conductor layer (ground layer (70)), and an insulating resin layer (60) disposed between the conductor layer (ground layer (70)) and the signal layer (25), the insulating resin layer (60) has voids in an overlapping location, in a plan view, with the signal line (20), and the voids (40) are communicated with the outside of the printed circuit board (100).
Abstract:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.
Abstract:
An electronic device includes a substrate having a connector formed on a main face, and a module having a terminal detachably connected to the connector of the substrate. The module includes an extended part which projects below the terminal in an installation direction. The substrate includes a bypass part which bypasses the extended part when the module is connected to the substrate. The bypass part is a cutout or a recess formed in the substrate. The extended part accommodates a plurality of components aligned in the installation direction. The extended part is extended from the lower end of the module by a difference between a first size, corresponding to multiple times the size of each component, and a second size ranging from the upper end of the module to the end of the terminal.
Abstract:
A suspension board with circuit includes a metal supporting board, a conductive layer laminated on the metal supporting board, and a via layer interposed between the metal supporting board and the conductive layer. The conductive layer includes a conductive pattern, and a reference portion serving as a positioning reference for placing the suspension board with circuit on a load beam.
Abstract:
Disclosed herein is a display apparatus that reduces a magnitude of a tension applied to a flexible PCB when a display panel is provided with a curved surface, and prevents damage of a driving chip. The display apparatus in accordance with exemplary embodiments includes a display panel configured to display an image, a source printed circuit board configured to control the display panel, and a flexible PCB that connects the display panel and the source printed circuit board. A length of at least one side edge of the flexible PCB is formed longer than a minimum length from the display panel to the source printed circuit board.
Abstract:
A receptacle connector includes an insulative housing with a mating tongue, a plurality of contacts having front contacting sections exposed upon two opposite surfaces of the mating tongue and rear tail sections extending downwardly outside of the housing for mounting to a printed circuit board. A metallic shield encloses said housing and forms a capsular mating cavity with said mating tongue extending forwardly therein. A metallic shielding plate includes a front horizontal section embedded with the mating tongue to isolate the contacting sections of the contacts which are located on two different opposite surfaces, and a rear vertical section extending downwardly from a rear edge of the front horizontal section to isolate the tail sections of the contacts which are arranged in two rows with said rear vertical section therebewteen.
Abstract:
A microelectronic structure and a method for fabricating the microelectronic structure provide a plurality of voids interposed between a plurality of conductor layers. The plurality of voids is also located between a liner layer and an inter-level dielectric layer. The voids provide for enhanced electrical performance of the microelectronic structure.