Abstract:
An improved printed circuit board (PCB) includes first and second substrates, which are disposed being distanced or spaced mutually and in which at least one or more semiconductor chips are mounted, and a signal transmission part for providing a signal transmission path between the first and second substrates, the signal transmission part being extended out of a region having a size smaller than a maximum size of the first substrate within the first substrate, and being extended in the second substrate. In disposing two substrates in a spaced-apart structure of upper and lower positions, a length of flexible printed circuit (FPC) connecting the two substrates can be reduced, and an impedance mismatching caused in use of the FPC can be reduced.
Abstract:
The present invention provides a motor that enables a lead of a coil to be appropriately led through holes, while allowing the lead of the coil to be fixed without contacting a wall surface of the hole in a base. Cuts 14b are formed in an insulating sheet or a printed circuit board 14; the cuts 14b extend substantially radially or spirally from a lead lead-out portion 14a as a center. Thus, even if an end of the lead 7a abuts against an area located outside the lead lead-out portion 14a, the abutting area and a nearby area located in the vicinity of the abutting area are pushed open along the cuts 14b extending from the lead lead-out portion 14a and guide the end of the lead 7a toward the lead lead-out portion 14a. The end of the lead 7a is thus appropriately guided into the lead lead-out portion 14a.
Abstract:
Modules for fixing flexible printed circuit boards. A module comprises a casing and a flexible printed circuit board. The casing has a recess on a lateral side. The flexible printed circuit board has a flexible portion disposed in the recess, wherein the thickness of the flexible portion is substantially equal to the thickness of the recess.
Abstract:
A head gimbal assembly for a hard disk drive includes a head slider having a head element part which performs reading and/or writing of data to/from a magnetic disc and a suspension on which the head slider is mounted. Bonding pads formed on the head slider are formed on a side surface of the head slider except for an air bearing surface (ABS) which faces the magnetic disc and a back surface on a side opposite to the ABS. End peripheries of the bonding pads are arranged to be in contact with an end periphery of the side surface of the head slider which abuts on the back surface of the head slider.
Abstract:
An apparatus and method for providing three-dimensional carrier mounting of one or more electronic components. In accordance with one embodiment, the device mounting apparatus of the present invention includes an elastically resilient plastic substrate having component mounting surfaces in at least two dimensions. At least one press-fit component insertion cavity is disposed within the component mounting surfaces to provide compressive retention of the electronic component when press-fit into the cavity. Preferably, the cavity has a depth such that when the component is press-fit, it does not extend above the surface plane of the cavity. The insertion cavity is further characterized as including at least one conductive trace disposed on an inner surface of said insertion cavity and positioned on the insertion cavity surface such that the conductive trace contacts at least one lead of the electronic device retained within the insertion cavity.
Abstract:
An interconnect for testing semiconductor components includes a substrate, and contacts on the substrate for making temporary electrical connections with bumped contacts on the components. Each contact includes a recess and a pattern of leads cantilevered over the recess configured to electrically engage a bumped contact. The leads are adapted to move in a z-direction within the recess to accommodate variations in the height and planarity of the bumped contacts. In addition, the leads can include projections for penetrating the bumped contacts, a non-bonding outer layer for preventing bonding to the bumped contacts, and a curved shape which matches a topography of the bumped contacts. The leads can be formed by forming a patterned metal layer on the substrate, by attaching a polymer substrate with the leads thereon to the substrate, or be etching the substrate to form conductive beams.
Abstract:
A connector that can be mounted to a substrate in a stable manner and a mounting structure of the connector to the substrate are provided. A connector according to the present invention includes a housing, which has a base, bosses, and terminals. Gaps are formed on portions of the base between the terminals and the bosses. The gaps extend to surround the terminals. Another connector according to the present invention includes a housing, which has a base, arms, bosses, and terminals. The arms are flexible and extend from the housing. Each boss is located at the distal end of one of the arms.
Abstract:
A mirror assembly includes a housing, an angularly adjustable power pack, wires for supplying power and mirror angle control, an electrochromic mirror subassembly including a heater, and a turn signal device. The components include individual connectors that plug into a multi-prong connector on the bundle of wires, or that piggyback into each other. Optionally, the heater incorporates an internal wire with end connectors for communicating power to opposite sides of the heater, and also includes layers of light-transmitting/diffusing material for diffusing light passing from the turn signal device through the diffusing material. A printed circuit board fits into a pocket in the panel-shaped carrier, and an integral retainer releasably secures the printed circuit board. The power pack is attached to the carrier via a ring of resilient fingers, and a continuous hoop flange prevents distortion of the carrier and in turn of the glass elements in the mirror subassembly.
Abstract:
A method of fabricating a micro-electromechanical fluid ejection device includes the step of forming a first layer of a sacrificial material on a substrate incorporating a drive circuitry layer. A first electrically conducting layer, a first structural layer and a second electrically conducting layer are formed on the sacrificial material with the first structural layer interposed between the electrically conducting layers. The sacrificial material is formed so that the first electrically conducting layer defines a heating circuit connected to the drive circuitry, and the electrically conducting layers and the first structural layer define a fluid ejecting member connected to an actuator arm that is displaceable on heating and subsequent expansion of the first electrically conducting layer. A second layer of sacrificial material is formed on the second conducting layer layer. A second structural layer is formed on the second layer of sacrificial material. The sacrificial material is formed so that the second structural layer defines a nozzle chamber structure with the fluid ejecting member positioned in the nozzle chamber structure. The sacrificial material is removed so that the nozzle chamber structure defines a nozzle chamber and a fluid ejection port in fluid communication with the nozzle chamber.
Abstract:
A method of making a microelectronic assembly including a compliant interface includes providing a first support structure such as a flexible dielectric sheet having a first surface and a porous resilient layer on the first surface of the first support structure, stretching the first support structure and bonding the stretched first support structure to a ring structure. A platen is provided in engagement with a second surface of the first support structure. The first surface of a second support structure, such as a semiconductor wafer, is abutted against the porous layer and, after the abutting step, a first curable liquid is disposed between the first and second support structures and within the porous layer. The first curable liquid may be at least partially cured.