Abstract:
A wiring board has a laminated structure having a recessed portion on a first-surface side of the laminated structure and a solder resist layer on a second-surface side of the laminated structure on the opposite side of the first-surface side. The laminated structure has a first-surface side pad formed in the bottom of the recessed portion and a second-surface side pad formed on the second-surface side of the laminated structure, the solder resist layer has a first opening portion and a second opening portion formed in the solder resist layer, the first opening portion is exposing the second-surface side pad, the second opening portion is formed on a back face of the recessed portion, and the back face of the recessed portion does not include the second-surface side pad.
Abstract:
A package apparatus comprises a first wiring layer, a first conductive pillar layer, a first molding compound layer, a second wiring layer, and a protection layer. The first wiring layer has a first surface and a second surface that are arranged opposite to each other. The first conductive pillar layer is disposed on the second surface of the first wiring layer, whereas the first conductive pillar layer is a non-circular conductive pillar layer. The first molding compound layer is disposed within a specific portion of the first wiring layer and the first conductive pillar layer. The second wiring layer is disposed on the first molding compound layer and one end of the first conductive pillar layer. The protection layer is disposed on the first molding compound layer and the second wiring layer.
Abstract:
An electronic device embedded substrate and a method of manufacturing the same are disclosed. The electronic device embedded substrate in accordance with an aspect of the present invention includes: an electronic device; and a core substrate having a cavity, in which the electronic device is embedded and of which a width of at least a portion is smaller than widths of other portions thereof.
Abstract:
A printed wiring board includes a core substrate having a cavity, multiple electronic components accommodated in the cavity, and a build-up layer formed on the substrate and including an insulating interlayer such that the interlayer is covering the cavity. The components include a first component, second component and third component, the core substrate has a first projection structure partitioning the first and second components in the cavity and a second projection structure partitioning the second and third components in the cavity, and the cavity and the first and second structures are formed in the substrate such that T1
Abstract:
A wiring substrate is provided with a core substrate including a first main surface, a second main surface, and a through hole. An electronic component including a resin cover is arranged in the through hole. A projection projects from an inner wall of the through hole toward the resin cover of the electronic component. An insulator is filled between the inner wall of the through hole and the electronic component. A first insulation layer covers the electronic component and the first main surface. A second insulation layer covers the electronic component and the second main surface. The resin cover of the electronic component includes an engagement groove formed by the projection and extending along a direction in which the electronic component is fitted into the through hole.
Abstract:
A method of making an array of integral terminals on a circuit assembly. The method includes the steps of depositing at least a first liquid dielectric layer on the first surface of a first circuit member, imaged to include a plurality of first recesses corresponding to the array of integral terminals. The selected surfaces of the first recesses are processed to accept electro-less conductive plating deposition. Electro-lessly plating is applied to the selected surfaces of the first recesses to create a plurality of first conductive structures electrically coupled to, and extending generally perpendicular to, the first circuitry layer. Electro-plating is applied to the electro-less plating to substantially first recesses with a conductive material. The steps of depositing, processing, electro-less plating, and electro-plating are repeated to form the integral terminals of a desired shape. The dielectric layers are removed to expose the terminals.
Abstract:
There are provided an electronic component module allowing for a circuit wiring to be disposed outside of a molded part by a plating process, and a manufacturing method thereof, the electronic component module including a substrate; at least one electronic component mounted on the substrate; a molded part sealing the electronic component; a plurality of conductive connectors having one ends bonded to the substrate or one surface of the electronic component and formed in the molded part to penetrate through the molded part; and at least one plane pattern formed on an outer surface of the molded part and electrically connected to at least one of the conductive connectors.
Abstract:
A battery pack configured to prevent excess solder material from flowing down onto a protective circuit module (PCM) is disclosed. According to some aspects, the battery pack includes at least one battery cell, a protective circuit module (PCM) electrically connected to the battery cell, and a conductive tab configured to electrically connect the battery cell to the PCM. A tapered through hole is formed in the PCM so that the conductive tab is inserted into and fixed to the through hole.
Abstract:
A method for manufacturing a printed wiring board includes forming a removable layer over first pads in central portion of an interlayer insulation layer to mount IC chip, forming on the interlayer and removable layers a resin insulation layer having openings exposing second pads in peripheral portion of the interlayer layer to connect second substrate, forming a seed layer on the resin layer, in the openings and on the second pads, forming on the seed layer a plating resist having resist openings exposing the openings of the resin layer with diameters greater than the openings, filling the resist openings with electrolytic plating such that metal posts are formed in the resist openings, removing the resist, removing the seed layer exposed on the resin layer, and removing the removable layer and the resin layer on the removable layer such that cavity exposing the first pads is formed in the resin layer.
Abstract:
A component-incorporated wiring substrate is provided. Some embodiments include a plate-like component incorporated in a core substrate and a build-up layer having an insulation layer and a conductor layer disposed in alternating layers. The component has terminal electrodes formed at its opposite ends having a side surface and a main surface. An insulation layer disposed on the main surface of the component has via conductors formed therein which are connected to the side surfaces and the main surfaces of the respective terminal electrodes. The via conductors are tapered, such that their via diameter decreases in a direction toward the terminal electrode, and their via diameter at a position where they connect to the main surface is greater than a length of the main surface. Accordingly, the area of connection between the via conductors and the corresponding terminal electrodes is increased, improving connection reliability through enhancement of tolerance for positional deviation.