CHIP FOR SURFACE PLASMON RESONANCE SENSOR AND SURFACE PLASMON RESONANCE SENSOR
    143.
    发明申请
    CHIP FOR SURFACE PLASMON RESONANCE SENSOR AND SURFACE PLASMON RESONANCE SENSOR 失效
    表面等离子体共振传感器和表面等离子体共振传感器的芯片

    公开(公告)号:US20100067015A1

    公开(公告)日:2010-03-18

    申请号:US12282611

    申请日:2007-03-14

    CPC classification number: G01N21/553 G01J3/02 G01J3/0256 G01J3/0294

    Abstract: A metal layer 13 made of Au or the like is formed on the upper surface of a transparent substrate 12. Dielectric layers 14a, 14b and 14c with different thicknesses are formed on the upper surface of the metal layer 13 (any one of the dielectric layers can have a thickness of 0) to form respective determination areas 15a, 15b and 15c. Further, different types of antibodies 22a, 22b and 22c are fixed on the upper surfaces of the respective dielectric layers 14a, 14b and 14c. Then, light is directed to the determination areas 15a, 15b and 15c, then signals of light reflected by the determination areas 15a, 15b and 15c are received, the light is dispersed, and analyses are performed on signals resulted from the light dispersion to detect the conditions of the surfaces of the respective determination areas, at the same time.

    Abstract translation: 在透明基板12的上表面上形成有由Au等制成的金属层13.在金属层13的上表面上形成具有不同厚度的电介质层14a,14b和14c(介电层中的任何一个 可以具有0的厚度)以形成相应的确定区域15a,15b和15c。 此外,不同类型的抗体22a,22b和22c固定在各个电介质层14a,14b和14c的上表面上。 然后,将光导向确定区域15a,15b和15c,然后接收由确定区域15a,15b和15c反射的光的信号,散射光,并且对由光散射产生的信号进行分析以检测 同时确定各个确定区域的表面条件。

    Integrated quartz biological sensor and method
    145.
    发明申请
    Integrated quartz biological sensor and method 审中-公开
    集成石英生物传感器及方法

    公开(公告)号:US20100020311A1

    公开(公告)日:2010-01-28

    申请号:US11818797

    申请日:2007-06-14

    CPC classification number: G01N21/658 G01J3/02 G01J3/0256

    Abstract: The present disclosure relates to the integration of optical spectroscopy onto a nanoresonator for a sensitive means of selectively monitoring biological molecules. An apparatus and a method are provided for making an apparatus that is a sensor in which both mass detection using a quartz nanoresonator and optical detection using SERS is integrated onto at least one chip, thereby providing redundancy in detection of a species.

    Abstract translation: 本公开涉及将光谱学集成到纳米谐振器上,用于选择性地监测生物分子的敏感手段。 提供了一种用于制造作为传感器的装置的装置和方法,其中使用石英纳米谐振器的质量检测和使用SERS的光学检测都集成在至少一个芯片上,从而在物种的检测中提供冗余。

    COMPACT CATADIOPTRIC SPECTROMETER
    147.
    发明申请
    COMPACT CATADIOPTRIC SPECTROMETER 有权
    紧凑的CATADIOPTRIC SPECTROMETER

    公开(公告)号:US20090310135A1

    公开(公告)日:2009-12-17

    申请号:US12374247

    申请日:2007-07-20

    Abstract: An optical characterisation system is described for characterising optical material. The system typically comprises a diffractive element (104), a detector (106) and an optical element (102). The optical element (102) thereby typically is adapted for receiving an illumination beam, which may be an illumination response of the material. The optical element (102) typically has a refractive surface for refractively collimating the illumination beam on the diffractive element (104) and a reflective surface for reflecting the diffracted illumination beam on the detector (106). The optical element (102) furthermore is adapted for cooperating with the diffractive element (104) and the detector (106) being positioned at a same side of the optical element (102) opposite to the receiving side for receiving the illumination beam.

    Abstract translation: 描述了用于表征光学材料的光学表征系统。 该系统通常包括衍射元件(104),检测器(106)和光学元件(102)。 因此,光学元件(102)通常适于接收可以是材料的照明响应的照明光束。 光学元件(102)通常具有用于折射地准直衍射元件(104)上的照明光束的折射表面和用于将衍射照射光束反射在检测器(106)上的反射表面。 光学元件(102)还适于与衍射元件(104)和检测器(106)配合,所述衍射元件(104)位于与用于接收照明光束的接收侧相对的光学元件(102)的同一侧。

    Multi-wavelength light source for spectroscopy
    148.
    发明申请
    Multi-wavelength light source for spectroscopy 有权
    用于光谱的多波长光源

    公开(公告)号:US20090303475A1

    公开(公告)日:2009-12-10

    申请号:US12157142

    申请日:2008-06-06

    Abstract: The invention discloses a multi-wavelength semiconductor light source comprising a plurality of semiconductor light sources mounted on a silicon sub-carrier and emitting radiation spanning a wavelength range. In preferred embodiments, these sources are configured in a linear and circular array. The radiation is coupled to a waveguide array disposed on the same silicon subcarrier, with a lower cladding of silicon dioxide and deposited core layer which is preferably the spin-on epoxy resin SU-8. Output from the waveguide array provides a compact multi-wavelength laser source with wide tuning range via a plurality of laser sources. An output spatial span of the waveguide array is smaller than an input spatial span and sufficiently small to probe the properties of a sample. A compact system for optical spectroscopy is constructed from the multi-wavelength semiconductor light source, a means for directing radiation from the source to a sample, and an optical detector configured to detect one of a radiation reflected from and transmitted through said sample. In various preferred embodiments, the semiconductor light sources can comprise lasers, light-emitting diodes, and superluminescent diodes.The system for optical spectroscopy can be used in a variety of applications including the analysis of in-vivo human tissue, agricultural samples, and pharmaceutical samples. Typical wavelength ranges for these and other applications include 650-1000 nm, 700-1700 nm, and 1100-2500 nm.

    Abstract translation: 本发明公开了一种多波长半导体光源,其包括安装在硅副载体上并发射跨越波长范围的辐射的多个半导体光源。 在优选实施例中,这些源被配置成线性和圆形阵列。 辐射耦合到设置在相同的硅子载波上的波导阵列,其中二氧化硅的下包层和沉积的芯层,其优选是旋涂环氧树脂SU-8。 来自波导阵列的输出通过多个激光源提供具有宽调谐范围的紧凑的多波长激光源。 波导阵列的输出空间跨度小于输入空间跨度,足够小以探测样品的性质。 用于光学光谱的紧凑系统由多波长半导体光源构成,用于将来自源的辐射引导到样本的装置,以及被配置为检测从所述样品反射并透过所述样品的辐射中的一种的光学检测器。 在各种优选实施例中,半导体光源可以包括激光器,发光二极管和超发光二极管。 光谱学系统可用于各种应用,包括体内人体组织,农业样品和药物样品的分析。 这些和其他应用的典型波长范围包括650-1000nm,700-1700nm和1100-2500nm。

    Hyperspectral Imaging System and Methods Thereof
    149.
    发明申请
    Hyperspectral Imaging System and Methods Thereof 审中-公开
    高光谱成像系统及其方法

    公开(公告)号:US20090295910A1

    公开(公告)日:2009-12-03

    申请号:US11912361

    申请日:2006-03-24

    Abstract: A hyperspectral imaging system and methods thereof especially useful in fields such as medicine, food safety, chemical sensing, and agriculture, for example. In one embodiment, the hyperspectral imaging module contains a light source (1) for illuminating the object (6) in a light-tight housing (17). The light is spectrally filtered (4) prior to illuminating the object. The light leaving the object is then directed through imaging optics (T) to an imaging array (9). In another embodiment, the object of interest is illuminated by ambient light which is then compensated by a light modulation system. In this embodiment, the light emitted from the object is spectrally filtered prior to reaching the imaging array.

    Abstract translation: 一种高光谱成像系统及其方法在医药,食品安全,化学感应和农业等领域尤其有用。 在一个实施例中,高光谱成像模块包含用于在无光外壳(17)中照亮物体(6)的光源(1)。 在照射物体之前,光线被光谱过滤(4)。 离开物体的光然后被引导通过成像光学元件(T)到成像阵列(9)。 在另一个实施例中,感兴趣的对象被环境光照亮,然后光被光调制系统补偿。 在该实施例中,在到达成像阵列之前,从对象发射的光被光谱滤波。

    SPECTROSCOPY MODULE
    150.
    发明申请
    SPECTROSCOPY MODULE 失效
    光谱模块

    公开(公告)号:US20090284741A1

    公开(公告)日:2009-11-19

    申请号:US12465276

    申请日:2009-05-13

    Abstract: In a spectroscopy module 1, a light passing hole 50 through which a light L1 advancing to a spectroscopic portion 4 passes is formed in a light detecting element 5. Therefore, it is possible to prevent the relative positional relationship between the light passing hole 50 and a light detecting portion 5a of the light detecting element 5 from deviating. Moreover, the light detecting element 5 is bonded to a front plane 2a of a substrate 2 with an optical resin adhesive 63. Thus, it is possible to reduce a stress generated onto the light detecting element 5 due to a thermal expansion difference between the light detecting element 5 and the substrate 2. Additionally, on the light detecting element 5, a first pool portion 101 is formed so as to be located at least between the light detecting portion 5a and the light passing hole 50 when viewed from a direction substantially perpendicular to the front plane 2a. Thus, when the light detecting element 5 is attached to the substrate 2 via the optical resin adhesive 63, the optical resin adhesive 63 is pooled to remain at the first pool portion 101. Thus, the optical resin adhesive 63 is prevented from penetrating into the light passing hole 50.

    Abstract translation: 在光谱模块1中,在光检测元件5中形成有通过向分光部4前进的光L1通过的光通过孔50.因此,能够防止光通过孔50与 光检测元件5的光检测部分5a偏离。 此外,光检测元件5利用光学树脂粘合剂63接合到基板2的前面2a。因此,可以减少由于光的热膨胀差而在光检测元件5上产生的应力 检测元件5和基板2.此外,在光检测元件5上,当从基本上垂直的方向观察时,第一池部分101形成为至少位于光检测部分5a和光通过孔50之间 到前平面2a。 因此,当光检测元件5通过光学树脂粘合剂63附着到基板2上时,将光学树脂粘合剂63汇集以保持在第一池部101处。因此,防止光学树脂粘合剂63渗透到 光通过孔50。

Patent Agency Ranking