Abstract:
The present invention regards methods and devices for detecting plaque on a surface in the oral cavity to which a fluorescent agent capable of binding to plaque has been applied, whereby a radiation source emits incident radiation for contacting the surface, reflected light and fluorescent emission resulting from contact of the radiation with the surface is collected by an optical collector and conveyed by an optical pathway in the device, where the optical light signal of the reflected light and fluorescent emission is converted to an electrical signal, and where the electrical signals of the fluorescent emission and the reflected light are then mathematically manipulated to provide a compensated plaque value as a function of the distance from the optical collector and the surface of the oral cavity to which the fluorescent agent has been applied.
Abstract:
Apparatus and method to measure optical absorption spectra with spatial resolution on the micron scale. An exemplary setup combines a continuous white light excitation beam in transmission geometry with a confocal microscope. Spatial resolution better than 1.4 μm in the lateral and 3.6 μm in the axial, directions was obtained. The detection and measurement of the absorption spectrum of hemoglobin in a single red blood cell under physiological conditions on the timescale of seconds was realized. The apparatus and method enables the investigation of spatial variations in the optical density of small samples on the micron scale and the study of biological assemblies at the single cell level, leading to applications in optical diagnostics, microfluidics, and other areas.
Abstract:
A microsphere-based analytic chemistry system is disclosed in which self-encoding microspheres having distinct characteristic optical response signatures to specific target analytes may be mixed together while the ability is retained to identify the sensor type and location of each sensor in a random dispersion of large numbers of such sensors in a sensor array using an optically interrogatable encoding scheme. An optical fiber bundle sensor is also disclosed in which individual microsphere sensors are disposed in microwells at a distal end of the fiber bundle and are optically coupled to discrete fibers or groups of fibers within the bundle. The identities of the individual sensors in the array are self-encoded by exposing the array to a reference analyte while illuminating the array with excitation light energy. A single sensor array may carry thousands of discrete sensing elements whose combined signal provides for substantial improvements in sensor detection limits, response times and signal-to-noise ratios.
Abstract:
A system and method for detection and identification of unknown samples using a combination of Raman and LIBS detection techniques. A first region of a sample and a second region of a sample are illuminated using structured illumination to thereby generate a first plurality of interacted photons and a second plurality of interacted photons. This first plurality and second plurality of interacted photons may be passed through a fiber array spectral translator device. Said first plurality of interacted photons are assessed using Raman spectroscopy to thereby generate a Raman data set. Said second plurality of interacted photons are assessed using LIBS spectroscopy to thereby generate LIBS data set. These data sets may be analyzed to identify the sample. These data sets may also be fused for further analysis.
Abstract:
A bioinstrumentation apparatus irradiates light onto a measured region of a subject, detects diffused light to acquire internal information on the measured region, and includes: a container holding a light transmitting medium; a light irradiation unit including a plurality of light emitting ends fixed to the container and irradiating a first light and a second light that mutually differ in wavelength onto the measured region that is immersed in the medium; a light detection unit including a plurality of light detecting ends fixed to the container and detecting the diffused light from the measured region; and a computing unit computing the internal information based on an output signal from the light detection unit; the wavelength of the first light being a wavelength at which an absorption coefficient of the measured region and a mean value of absorption coefficient of the medium are substantially equal, the wavelength of the second light being a wavelength at which the absorption coefficient of the measured region is greater than the mean value of the absorption coefficient of the medium, and the computing unit computing the internal information based on an output signal related to diffused light of the first light and computing boundary information between the measured region and the medium based on an output signal related to diffused light of the second light.
Abstract:
Disclosed is a spectroscopic system having a fiber-optic probe for simultaneous IR and Raman measurement. The probe includes a single strand of optical fiber, such as sapphire which is suitable for IR absorption measurements as far as 4 μm and Raman excitation at wavelengths as short as 300 nm. The probe is immersed in the sample and functions in the evanescent wave mode for both IR absorption and Raman scattering measurements. The sensing system makes possible the synergistic, and simultaneous, analysis of both IR and Raman data in an integrated device.
Abstract:
An optical probe for non-invasively measuring an analyte property in a biological sample of a subject, comprises a plurality of illumination fibers that deliver source light from an optical probe input to a sample interface, a plurality of collection fibers that deliver light returned from the sample interface to an optical probe output, and wherein the illumination and collection fibers are oriented substantially perpendicular to the sample interface and the illumination and collection fibers are stacked in a plurality of linear rows to provide a stack of fibers arranged in a rectangular pattern. The optical probe is amenable to manufacturing on a scale consistent with a commercial product. Methods of making such probes are described.
Abstract:
A method and a device for optically determining state variables inside a container (1) for liquefied gases. In the method and device, light emitted by an illumination unit (2) travels within an optical waveguide (7, 9) to a contact point (33) with the content of the container (1) and is partially reflected there, the intensity of the reflected light is measured by an image sensor (4), and a state variable is determined from the intensity. In order to create a comprehensive “image” of the state variables in the container and of the container content, several optical waveguides (29, 29′) are guided to contact points (33) which are distributed within the container (1) and form measurement points (9.1, 9.2, 9.3, . . . , 9.n). Locally assigned state variables (refractive index, density, temperature, etc.) of the container content are determined from the measured values obtained at the measurement points (9.1, 9.2, 9.3, . . . , 9.n) and are evaluated along with the spatial coordinates of the measurement points (9.1, 9.2, 9.3, . . . , 9.n) in the container (1).
Abstract:
A method and device structure are provided which enable an archive sample to be collected and detached relative to a device within which a series of processes, such as PCR are being provided. A chamber structure and method of use are provided in which a controlled and precise volume is obtained by control of the relative resistance to flow through various channels.
Abstract:
Methods, apparatus (100), and computer program products for determining lifetimes and distribution of fluorophores (102) embedded in samples (104). Fluorophores are placed into the sample, light from a source (110) selected to excite the fluorophores illuminates the sample, light emitted from the excited fluorophores is detected by a device (138), and a time-domain analysis is performed on the detected emitted light to determine a three-dimensional distribution of the fluorophores in the sample.