Abstract:
A solid silicon secondary battery, by substitutions of silicon for lithium, enables decreasing of preparations cost and minimizing of environmental pollutions. By laminate pressing multiple times a positive or negative electrode material, the present invention enables increasing of the density of a positive or negative electrode active material to increase current density and capacity. By having mesh plates equipped inside the positive electrode active material and the negative electrode active material, the present invention enables effective moving of electrons. By enabling common use of an electrode, of a silicon secondary battery, connected during a serial connections of the silicon secondary battery, the present invention enables decreasing of the thickness of a silicon secondary battery assembly and increasing of output voltage. By being integrally formed with a PCB or a chip and supplying a power source, the present invention function as a backup power source for instant discharging.
Abstract:
A flexible board includes a first sheet section including a first principal surface, a second sheet section including a second principal surface and provided in a different position from the first principal surface in a normal direction to the first principal surface, at least one first bent sheet section configured to connect ends of the first and second sheet sections, the first bent sheet section including a third principal surface not parallel to the first and second principal surfaces, and at least two second bent sheet sections each including a fourth principal surface and provided in different positions from the third principal surface in a normal direction to the third principal surface. The second bent sheet sections are positioned so as to sandwich the first bent sheet section therebetween when viewed in a plan view in the normal direction to the third principal surface.
Abstract:
A computer system assembly that includes a substrate and a first board mounted on the substrate. A flexible cable is secured to the first board. The computer system assembly further includes a second board mounted on the substrate. The second board includes a FPC connector. The FPC connector includes a body having a channel extending through the body such that the flexible cable may be positioned in the channel and pulled entirely through the body of the FPC connector. The FPC connector further includes a latching mechanism that secures the flexible cable within the channel once the flexible cable is pulled through the FPC connector. The first board and the second board are moved closer together as the flex cable is pulled through the FPC connector before at least one of the first board and the second board is mounted on the substrate.
Abstract:
Disclosed is a board including a semiconductor device including a first terminal to receive a signal that sets a functionality of the device, a second terminal to supply a first value and a third terminal to supply a second value, a first connection member connected to the first to third terminals of the semiconductor device, and a second connection member adapted to be connected to the first connection member provided on a counterpart board, with at least two terminals of the second connection member connected together via a first connection circuit, wherein the first connection member of the board is connected to the second connection member of another counterpart board.
Abstract:
An exemplary subcutaneous medical device implanted within a patient uses a coil-less magnetic field sensor included within the subcutaneous medical device to detect a toggling sequence between a presence and an absence of an externally-generated static magnetic field. The toggling sequence is representative of a digital data stream according to a digital wireless communication protocol. The subcutaneous medical device identifies, based on the detected toggling sequence and in accordance with the digital wireless communication protocol, a multi-bit command encoded within the digital data stream represented by the toggling sequence. The subcutaneous medical device further performs, in response to the identifying of the multi-bit command, an action associated with the multi-bit command. Corresponding methods and a corresponding external controller are also disclosed.
Abstract:
Provided are interconnect circuits for interconnecting arrays of battery cells and methods of forming these interconnect circuits as well as connecting these circuits to the battery cells. An interconnect circuit may include a conductive layer and one or more insulating layers. The conductive layer may be patterned with openings defining contact pads, such that each pad is used for connecting to a different battery cell terminal. In some embodiments, each contact pad is attached to the rest of the conductive layer by a fusible link formed from the same conductive layer as the contact pad. The fusible link controls the current flow to and from this contact pad. The insulating layer is laminated to the conductive layer and provides support to the contacts pads. The insulating layer may also be patterned with openings, which allow forming electrical connections between the contact pads and cell terminals through the insulating layer.
Abstract:
The present invention relates to, for example, printed circuit boards having a thin film battery or other electrochemical cell between or within its layer or layers. The present invention also relates to, for example, electrochemical cells within a layer stack of a printed circuit board.
Abstract:
An example device includes a lithium-based battery having conductive battery contacts protruding from a surface of the battery, where a non-conductive potion of the surface of the battery separates the conductive battery contacts. The battery is a type that undergoes an expansion during charging in which the expansion of the lithium-based battery includes an outward bulging of the non-conductive portion of the battery surface. The device includes a substrate having conductive substrate contacts. The conductive battery contacts are electrically connected to the respective conductive substrate contact via a flexible electrically-conductive adhesive that physically separates the conductive battery contacts from the respective conductive substrate contacts and allows for relative movement therebetween caused by the expansion of the lithium-based battery.
Abstract:
Disclosed is a circuit board for a secondary battery, which ensures an improved safety according to a temperature of the secondary battery, and a battery pack including the circuit board. The circuit board for a secondary battery, which is connected to at least one of a cathode tab and an anode tab of the secondary battery, includes a tab coupling portion connected to the cathode tab or the anode tab, a charging/discharging path connected to the tab coupling portion to give a path through which a charging current or a discharging current of the secondary battery flows, the charging/discharging path having at least one path cutting portion formed therein, one pair of conductive plates respectively attached to both ends of the path cutting portion, the conductive plates being at least partially bent, and a current interruption module having both ends respectively connected to the one pair of conductive plates, the current interruption module sensing a temperature of the secondary battery and interrupting a current according to the sensed temperature.
Abstract:
Provided are interconnect circuits for interconnecting arrays of battery cells and methods of forming these interconnect circuits as well as connecting these circuits to the battery cells. An interconnect circuit may include a conductive layer and one or more insulating layers. The conductive layer may be patterned with openings defining contact pads, such that each pad is used for connecting to a different battery cell terminal In some embodiments, each contact pad is attached to the rest of the conductive layer by a fusible link formed from the same conductive layer as the contact pad. The fusible link controls the current flow to and from this contact pad. The insulating layer is laminated to the conductive layer and provides support to the contacts pads. The insulating layer may also be patterned with openings, which allow forming electrical connections between the contact pads and cell terminals through the insulating layer.