Abstract:
Disclosed is an apparatus for counting single photons including an edge combiner configured to detect an edge of each of applied clocks using a plurality of Phase-Locked Loops (PLL) to generate a combined signal; a sampling unit configured to sample all events occurring in each SPAD of a single photon detection diode (SPAD) array using an OR tree and an XOR tree; and a calculation unit configured to count the sampled events based on the combined signal to count single photons.
Abstract:
A method and apparatus for photon, ion or particle counting described that provides seven orders of magnitude of linear dynamic range (LDR) for a single detector. By explicitly considering the log-normal probability distribution in voltage transients as a function of the number of photons, ions or particles present, the binomial distribution of observed counts for a given threshold, the mean number of photons, ions or particles can be determined well beyond the conventional limit.
Abstract:
Superconducting nanowire avalanche photodetectors (SNAPs) have using meandering nanowires to detect incident photons. When a superconducting nanowire absorbs a photon, it switches from a superconducting state to a resistive state, producing a change in voltage that can be measured across the nanowire. A SNAP may include multiple nanowires in order to increase the fill factor of the SNAP's active area and the SNAP's detection efficiency. But using multiple meandering nanowires to achieve high fill-factor in SNAPs can lead to current crowding at bends in the nanowires. This current crowding degrades SNAP performance by decreasing the switching current, which the current at which the nanowire transitions from a superconducting state to a resistive state. Fortunately, staggering the bends in the nanowires reduces current crowding, increasing the nanowire switching current, which in turn increases the SNAP dynamic range.
Abstract:
A circuit includes a charge sensitive amplifier (CSA) that includes an input to receive current from a photon sensor and generates an output signal that represents photons received by the sensor and dark current of the sensor. A control circuit generates a compensation signal to offset the dark current from the photon sensor at the input of the CSA. The control circuit couples feedback from the CSA to enable the compensation signal if the photon current received from the sensor is below a predetermined threshold. The control circuit decouples the feedback from the CSA to disable the compensation signal if the photon current received from the sensor is above the predetermined threshold.
Abstract:
The present invention provides a device and system for high-efficiency and low-noise detection of single photons within the visible and infrared spectrum. In certain embodiments, the device of the invention can be integrated within photonic circuits to provide on-chip photon detection. The device comprises a traveling wave design comprising a waveguide layer and a superconducting nanowire atop of the waveguide.
Abstract:
A system and method for characterizing incident ions are provided. The method includes positioning a transmission line detector to receive incident ions, the transmission line detector comprising a superconducting meandering wire defining a detection area for incident ions, and applying a bias current to the transmission line detector. The method also includes detecting a first signal produced in the transmission line detector due to an ion impacting the detection area, and detecting a second signal produced in the transmission line detector due to the ion impacting the detection area. The method further includes analyzing the first signal and the second signal to characterize the ion. In some aspects, the method further includes identifying a delay between the first signal and the second signal to determine, using the identified delay, a location of the ion on the detection area.
Abstract:
(Object) To provide an optical receiver and a control method thereof that enable equalization of both the quantum efficiencies and the dark count probabilities of multiple photon detectors.(Solving Means) An optical receiver includes multiple photon detectors, a first equalizing means that equalizes either dark count probabilities or quantum efficiencies of the multiple photon detectors, and a second equalizing means that equalizes the other ones without affecting the equalization by the first equalizing means.
Abstract:
The present invention relates to a single photon detector (SPD) at telecom wavelength of 1.55 μm based on InGaAs/InP avalanche photodiode (APD). In order to operate the SPD at a low after-pulse noise, a DC bias voltage lower than the breakdown voltage is applied to an InGaAs/InP APD. A bipolar rectangular gating signal is superimposed with the DC bias voltage and applied to the APD so as to exceed the breakdown voltage during the gate-on time of each period of the gate signal. The use of the bipolar rectangular gating signal enabling us to operate the APD well below the breakdown voltage during the gate-off time, thereby make the release of the trapped charge carriers faster and then reduces the after-pulse noise. As a result, it permits to increase the repetition rate of the SPD.
Abstract:
A single-photon receiver is presented. The receiver comprises two SPADs that are monolithically integrated on the same semiconductor chip. Each SPAD is biased with a substantially identical gating signal. The output signals of the SPADs are combined such that capacitive transients present on each output signal cancel to substantially remove them from the output signal from the receiver.
Abstract:
A system includes a detector and a processing module. The detector includes pixels configured to detect an event corresponding to energy from a radiopharmaceutical. The processing module is configured to receive a request for each pixel that detects energy during a reading cycle. The processing module is configured to determine an energy level for each requesting pixel. For each requesting pixel, the processing module is configured to count the event when the energy level corresponds to an energy of the radiopharmaceutical, and to determine a combined energy level of the pixel and at least one adjacent pixel when the energy level does not correspond. The processing module is configured to count the event when the combined energy level corresponds to the energy of the radiopharmaceutical, and to disregard the event when the combined energy level does not correspond to the energy of the radiopharmaceutical.